Клетки хрящевой соединительной ткани рисунок. Строение и функции хрящей коленного сустава

Хрящевая ткань включает 3 вида хряща (гиалиновый, эластический и волокнистый), отличающиеся друг от друга преимущественно по строению межклеточного вещества. В хрящевой ткани нет кровеносных сосудов, поэтому её трофика осуществляется диффузно за счёт сосудов надхрящницы или синовиальной жидкости.

Клетки : хондробласты, хондроциты и хондрокласты.

Хондробласты - мало дифференцированные клетки хрящевой ткани, в эмбриогенезе образуются из недифференцированных клеток мезенхимы; имеют овальную форму, иногда с заострёнными концами. В их базофильно окрашенной цитоплазме хорошо развита ГЭС, что связано с синтезом белков межклеточного вещества хряща. При определенных обстоятельствах способны вырабатывать ферменты, разрушающие межклеточное вещество - коллагеназу, эластазу, гиалуронидазу. Локализуются в зонах роста хряща (во внутреннем слое надхрящницы). По мере старения в хондробластах уменьшается количество гранулярного эндоплазматического ретикулума и они превращаются в хондроциты.

Хондроциты - дифференцированные клетки хряща, форма которых уже становится округлой или угловатой. Синтез межклеточного вещества хряща в них протекает на менее высоком уровне, чем в хондробластах. Располагаются в толще межклеточного вещества в специальных полостях – лакунах. Иногда в одной лакуне имеется несколько хондроцитов, которые образовались в результате деления одной клетки, ещё не утратившей способности к митозу. Поэтому такие группы клеток называются изогенными.

Хондрокласты – разновидность полинуклеарных макрофагов, которые участвуют в разрушении хряща.

Межклеточное вещество представлено аморфным компонентом и волокнами. В гиалиновом и волокнистом хрящах содержатся только коллагеновые (хондриновые) волокна, а в эластическом – преимущественно эластические и в меньшей мере - коллагеновые. Аморфный компонент представлен протеогликанами и гликозаминогликанами.

Локализация:

Гиалиновый хрящ – в трахее и бронхах, суставных поверхностях, в гортани, соединениях ребер с грудиной;

Эластический – в ушных раковинах, рожковидные и клиновидные хрящи гортани, хрящи носа;

Волокнистый хрящ – в местах перехода сухожилий и связок в гиалиновый хрящ, в межпозвонковых дисках, полуподвижных сочленениях, симфизах. Так, например, в межпозвонковом диске внутри имеется студенистое ядро, состоящее из гликозаминогликанов и протеогликанов и локализующихся в них хрящевых клеток, а снаружи располагается фиброзное кольцо, которое содержит преимущественно волокна, имеющие циркулярный ход.

Надхрящница состоит из 2-х слоёв. Наружный её слой образован плотной волокнистой неоформленной соединительной тканью, а внутренний (хондрогенный) - рыхлой волокнистой соединительной тканью, в которой имеется много хондробластов и кровеносных сосудов. За счёт внутреннего слоя осуществляется трофика и регенерация хрящевой ткани.

Рост хряща осуществляется двумя путями: за счёт хондрогенного слоя надхрящницы (аппозиционный рост) и за счёт размножения клеток, расположенных в полостях внутри хряща, которые ещё не утратили способности к делению (внутренний, или интерстициальный рост).

Гистогенез хрящевой ткани осуществляется из мезенхимоцитов, выселяющиеся из склеротомов, которые образуют хондрогенные островки. Дифференцировка мезенхимоцитов в хондрогенные клетки и хондробласты сопрвождается синтезом межклеточного вещества, которое заполняет промежутки между клетками, отделяя их друг от друга. Отделившиеся таким образом клетки ещё способны некоторое время делиться и превращаются в хондроциты, которые располагаются изогенными группами в одной лакуне.

К соединительным тканям относятся также хрящевая и костная ткани, из которых построен скелет тела человека. Эти ткани называют скелетными. Органы, построенные из этих тканей, выполняют функции опоры, движения, защиты. Они также участвуют в минеральном обмене.

Хрящевая ткань (textus cartilaginus) образует суставные хрящи, межпозвоночные диски, хрящи гортани, трахеи, бронхов, наружного носа. Состоит хрящевая ткань из хрящевых клеток (хондробластов и хондроцитов) и плотного, упругого межклеточного вещества.

Хрящевая ткань содержит около 70-80 % воды, 10-15 % органических веществ, 4-7 % солей. Около 50-70 % сухого вещества хрящевой ткани - это коллаген. Межклеточное вещество (матрикс), вырабатываемое хрящевыми клетками, состоит из комплексных соединений, в которые входят протеогликаны. гиалуроновая кислота, молекулы гликозаминогликанов. В хрящевой ткани присутствуют клетки двух типов: хондробласты (от греч. chondros - хрящ) и хондроциты.

Хондробласты - это молодые, способные к митотическому делению округлые или овоидные клетки. Они продуцируют компоненты межклеточного вещества хряща: протеогликаны, гликопротеины, коллаген, эластин. Цитолемма хондробластов образует множество микроворсинок. Цитоплазма богата РНК, хорошо развитой эндоплазматической сетью (зернистой и незернистой), комплексом Гольджи, митохондриями, лизосомами, гранулами гликогена. Ядро хондробласта, богатое активным хроматином, имеет 1-2 ядрышка.

Хондроциты - это зрелые крупные клетки хрящевой ткани. Они округлые, овальные или полигональные, с отростками, развитыми органеллами. Хондроциты располагаются в полостях - лакунах, окружены межклеточным веществом. Если в лакуне одна клетка, то такая лакуна называется первичной. Чаще всего клетки располагаются в виде изогенных групп (2-3 клетки), занимающих полость вторичной лакуны. Стенки лакуны состоят из двух слоев: наружного, образованного коллагеновыми волокнами, и внутреннего, состоящего из агрегатов протеогликанов, которые входят в контакт с гликокаликсом хрящевых клеток.

Структурной и функциональной единицей хрящей является хондрон, образованный клеткой или изогенной группой клеток, околоклеточным матриксом и капсулой лакуны.

В соответствии с особенностями строения хрящевой ткани различают три вида хряща: гиалиновый, волокьистый и эластический хрящ.

Гиалиновый хрящ (от греч. hyalos - стекло) имеет голубоватый цвет. В его основном веществе располагаются тонкие коллагеновые волокна. Хрящевые клетки имеют разнообразные форму и строение в зависимости от степени дифференцировки и места расположения их в хряще. Хондроциты образуют изогенные группы. Из гиалинового хряща построены суставные, реберные хрящи и большинство хрящей гортани.

Волокнистый хрящ, в основном веществе которого содержится большое количество толстых коллагеновых волокон, обладает повышенной прочностью. Клетки, расположенные между коллагеновыми волокнами, имеют вытянутую форму, у них длинное палочковидное ядро и узкий ободок базофильной цитоплазмы. Из волокнистого хряща построены фиброзные кольца межпозвоночных дисков, внутрисуставные диски и мениски. Этим хрящом покрыты суставные поверхности височно-нижнечелюстного и грудино-ключичного суставов.

Эластический хрящ отличается упругостью, гибкостью. В матриксе эластического хряща наряду с коллагеновыми содержится большое количество сложно переплетающихся эластических волокон. Округлые хондроциты расположены в лакунах. Из эластического хряща построены надгортанник, клиновидные и рожковидные хрящи гортани, голосовой отросток черпаловидных хрящей, хрящ ушной раковины, хрящевая часть слуховой трубы.

Костная ткань (textus ossei) отличается особыми механическими свойствами. Она состоит из костных клеток, замурованных в костное основное вещество, содержащее коллагеновые волокна и пропитанное неорганическими соединениями. Различают три типа костных клеток: остеобласты, остеоциты и остеокласты.

Остеобласты - это отростчатые молодые костные клетки многоугольной, кубической формы. Остеобласты богаты элементами зернистой эндоплазматической сети, рибосомами, хорошо развитым комплексом Гольджи и резко базофильной цитоплазмой. Они залегают в поверхностных слоях кости. Округлое или овальное ядро их богато хроматином и содержит одно крупное ядрышко, обычно расположенное на периферии. Остеобласты окружены тонкими коллагеновыми микрофибриллами. Вещества, синтезируемые остеобластами, выделяются через всю их поверхность в различных направлениях, что приводит к образованию стенок лакун, в которых эти клетки залегают. Остеобласты синтезируют компоненты межклеточного вещества {коллаген - это компонент протеогликана). В промежутках между волокнами располагается аморфное вещество - остеоидная ткань, или предкость, которая затем кальцифицируется. Органический матрикс кости содержит кристаллы гидроксиапатита и аморфный фосфат кальция, элементы которых поступают в костную ткань из крови через тканевую жидкость.

Остеоциты - это зрелые многоотростчатые веретенообразные костные клетки с крупным округлым ядром, в котором четко видно ядрышко. Количество органелл невелико: митохондрии, элементы зернистой эндоплазматической сети и комплекс Гольджи. Остеоциты располагаются в лакунах, однако тела клеток окружены тонким слоем так называемой костной жидкости (тканевой) и не соприкасаются непосредственно с кальцинированным матриксом (стенками лакуны). Очень длинные (до 50 мкм) отростки остеоцитов, богатые актиноподобны-ми микрофиламентами, проходят в костных канальцах. Отростки также отделены от кальцинированного матрикса пространством шириной около 0,1 мкм, в котором циркулирует тканевая (костная) жидкость. За счет этой жидкости осуществляется питание (трофика) остеоцитов. Расстояние между каждым остеоцитом и ближайшим кровеносным капилляром не превышает 100-200 мкм.

Остеокласты - это крупные многоядерные (5-100 ядер) клетки моноцитарного происхождения, размером до 190 мкм. Эти клетки разрушают кость и хрящ, осуществляют резорбцию костной ткани в процессе ее физиологической и репаративной регенерации. Ядра остеокластов богаты хроматином и имеют хорошо видимые ядрышки. В цитоплазме содержится множество митохондрий, элементов зернистой эндоплазматической сети и комплекса Гольджи, свободных рибосом, различных функциональных форм лизосом. Остеокласты имеют многочисленные ворсинкообразные цитоплазматические отростки. Таких отростков особенно много на поверхности, прилежащей к разрушаемой кости. Это гофрированная, или щеточная, каемка, увеличивающая площадь соприкосновения остеокласта с костью. Отростки остеокластов также имеют микроворсинки, между которыми находятся кристаллы гидроксиапатита. Эти кристаллы обнаруживаются в фаголизосомах остеокластов, где они разрушаются. Деятельность остеокластов зависит от уровня паратиреоидного гормона, увеличение синтеза и секреции которого приводит к активации функции остеокластов и разрушению кости.

Различают два типа костной ткани - ретикулофиброзную (грубоволокнистую) и пластинчатую. Грубоволокнистая костная ткань имеется у зародыша. У взрослого человека она располагается в зонах прикрепления сухожилий к костям, в швах черепа после их зарастания. Грубоволокнистая костная ткань содержит толстые неупорядоченные пучки коллагеновых волокон, между которыми находится аморфное вещество.

Пластинчатая костная ткань образована костными пластинками толщиной от 4 до 15 мкм, которые состоят из остеоцитов, основного вещества, тонких коллагеновых волокон. Волокна (коллаген I типа), участвующие в образовании костных пластинок, лежат параллельно друг другу и ориентированы в определенном направлении. При этом волокна соседних пластинок разнонаправленные и перекрещиваются почти под прямым углом, что обеспечивает большую прочность кости.

Все наши кости в процессе эмбрионального (зародышевого) развития образуются из хрящей. У взрослого человека они составляют не более 2% массы тела. Кости растут благодаря диафизарному хрящу, удлиняются они до тех пор, пока не закрываются так называемые зоны роста1. Однако некоторые из них увеличиваются в течение всей жизни человека. Установлено, что постоянно растут, хотя и малыми темпами, нижняя челюсть, нос, ушные раковины, ступни ног и кисти рук.

Наиболее часто, спортсмены покидают спорт из-за травм суставно-связочного аппарата. Его слабое место — хрящ. Проблемы с позвоночником также обусловлены в основном патологией межпозвоночных хрящей.
Можно сказать, что в спортивной травматологии лечение хрящей является заботой № 1. При этом некоторые авторы считают, что восстанавливаются они не более чем на 50%, ставя, таким образом, под сомнение возможность полного восстановления спортивной работоспособности. Попробуем более подробно рассмотреть, что же такое хрящ и определить пределы и методы его регенерации.

Хрящевая ткань — одна из разновидностей соединительной ткани, которая выполняет в организме опорные функции. Непременным атрибутом хряща, за исключением суставного, является надхрящница, обеспечивающая его питание и рост. В суставах хрящ обнажен и контактирует непосредственно с внутренней средой сустава — синовиальной жидкостью. Она выполняет роль своеобразной смазки между трущимися поверхностями суставов, покрытых гладким глиаиновым хрящом. Хрящи костей и позвоночника постоянно испытывают как статическую, так и динамическую нагрузки. Хрящи носа, гортани, бронхов, фиброзных треугольников в сердце осуществляют также и опорную функцию.

Структура хряща позволяет ему испытывать обратимую деформацию и в то же время сохранять способность к обмену веществ и размножению. Главные его компоненты — хрящевые клетки (хендроциты) и внеклеточный матрикс, состоящий из волокон и основного вещества. Причем, большую часть массы хряща составляет именно межклеточное вещество.
В зависимости от преобладания коллагеновых, эластических волокон или основного вещества различают гиалиновый, эластический и волокнистый хрящ.

Особенностью хряща, по сравнению с другими видами тканей в организме является то, что в нем мало клеток и они окружены большим количеством межклеточного пространства — матрикса. Хрящ так плохо восстанавливается после повреждений именно потому, что в нем очень мало клеток, способных размножаться и основная часть репарации (восстановления) идет за счет внеклеточного матрикса. В эластическом хряще (гортани, носа, ушной раковины) содержится много эластина (из него, например, на 30% состоит ухо человека).

В суставном хряще очень много воды (в хряще головки бедренной кости молодого человека — 75 г на 100 г ткани). Глауроновая кислота помогает матриксу связывать воду, чем и обеспечиваются упругие и эластические свойства ткани.
В гиалиновом хряще, который чаще всего представляет внутрисуставную поверхность, половину всего матрикса составляет коллаген — основной белок соединительной ткани. Только сухожилия и дерма (глубокий слой кожи) превосходят матрикс по насыщенности коллагеном. Наибольшая его концентрация в суставных хрящах сосредоточена в поверхностной зоне.
Коллаген — понятие собирательное, существуют несколько его видов. Разные по химическому составу, все они, тем не менее, состоят из очень крупных молекул, свернутых в тройные спирали. Такое строение волокон делает их очень прочными на скручивание, растяжение и разрыв. Каждая из трех цепей имеет полипептидную структуру.
Если мы проанализируем состав полипептидных цепей любого из трех видов коллагена (у человека их насчитывается именно три), то увидим, что наиболее велик удельный вес аминокислоты глицина. Следом за ним по удельному весу следуют аминокислоты промен (пролин -?) и аланин. Иногда аланин «перевешивает» пролин, а иногда наоборот, пролин по своему удельному весу превосходит аланин.

Эластические хрящи (например, носа и ушей) содержат в своем матриксе преимущественно эластин, который, подобно коллагену, формирует прочные волокна. Они тоньше коллагеновых, но отличаются большой прочностью. Ткани, содержащие большое количество эластина способны к очень большим обратимым деформациям. Основной аминокислотой эластина (так же как и коллагена) является глицин. За ним по процентному содержанию следуют аланин, пролин и валин.
Эластина, как и коллагена, существует несколько видов. Волокна эластина тоже имеют пептидный характер и спиралевидную форму. Этим и объясняется их большая растяжимость. Спираль, однако, не тройная, а одинарная, поэтому волокна эластина тоньше коллагеновых. У разных хрящей в матриксе преобладают либо коллагеновые, либо эластиновые волокна. Все они переплетены в прочную трехмерную сеть. Коллагеновая (эластиновая) сеть «удерживает» внутри хряща и другие молекулы как механически, так и с помощью электростатических связей.

Биомеханические свойства хрящей делают их высокоспецифическими и по существу уникальными компонентами опорно-двигательного аппарата.
Они:
а) принимают на себя действие внешних механических сил сжатия и растяжения; распределяют эти силы равномерно, поглощают и рассеивают их, переводя аксиально направленные силы в тангенциальные (в суставах конечностей, позвоночника и т.д.);
б) образуют устойчивые к износу поверхности сочленений скелета, участвуют в формировании смазочного аппарата в синовиальных суставах;
в) являются местом прикрепления и опорой для мягких тканей и мышц; образуют полости в местах контакта с внешней средой (хрящи носа, ушей, органов дыхания).

Считается, что хрящевой матрикс состоит из 3-х основных компонентов:
1) волокнистый коллагеновый каркас, который образует трехмерную сеть переплетений;
2) молекулы протеогликанов, которые заполняют петли волокнистого каркаса;
3) вода, свободно перемещающаяся между переплетениями каркаса и молекулами протеогликанов.

У суставного хряща нет кровеносных сосудов. Он питается диффузно, поглощая питательные вещества из синовиальной жидкости.

Коллагеновый каркас является как бы «скелетом» хряща. Он обладает большой упругостью по отношению к силам растяжения и в тоже время оказывает относительно слабое сопротивление нагрузке на сжатие. Поэтому внутрисуставные хрящи (например: мениски и суставные поверхности бедренной и берцовых костей) легко повреждаются при компрессионных (сжимающих) нагрузках и почти никогда при нагрузках на растяжение («на разрыв»).
Протеогликановый компонент матрикса отвечает за способность хряща связывать воду. Она может удаляться за пределы хряща в синовиальную жидкость и возвращаться в него обратно. Именно вода как несжимаемая субстанция обеспечивает достаточную жесткость хряща. Ее перемещения равномерно распределяет внешнюю нагрузку по всему хрящу, в результате чего происходит ослабление внешних нагрузок и обратимость возникающих при нагрузках деформаций.

Эластические хрящи гортани, трахеи содержат очень небольшое количество сосудов. Коллагеновые хрящи суставов вообще не содержат сосудов. Большая механическая нагрузка на хрящ несовместима с васкуляризацией (сосудистым обеспечением). Обмен в таком хряще осуществляется благодаря перемещению воды между компонентами матрикса. Она содержит все необходимые хрящам метаболиты. Поэтому в них резко замедлены как анаболические, так и катаболические процессы. Отсюда плохое их посттравматическое восстановление, в отличие от хрящей с васкуляризацией.
Кроме глиаинового и эластического хрящей выделяют еще одну группу — волокнистый, или фиброзный хрящ. Фиброз — значит «волокно». Матрикс фиброзного хряща образован коллагеновыми волокнами, однако, по сравнению, скажем, с глиаиновым хрящом пучки коллагеновых волокон более толстые и не имеют структуры трехмерного переплетения. Они ориентированы, в основном, параллельно друг другу. Их направление соответствует векторам сил натяжения и давления. Из фиброзного хряща состоят межпозвонковые диски, отличающиеся большой прочностью. Крупные коллагеновые волокна и их пучки располагаются в межпозвонковых дисках циркулярно. Помимо межпозвонковых дисков волокнистый хрящ находится в местах прикрепления сухожилий к костям или хрящам, а также в сочленении лобковых костей.
Поддержание всей структурной целостности матрикса хряща зависит целиком от хондроцитов. И хотя их масса невелика, они синтезируют тем не менее все биополимеры, из которых состоит матрикс — коллаген, эластин, протеогликоны, гликопротеины, и т.д. При удельном весе от 1 до 10% общего объема хрящевой ткани хондроциты обеспечивают образование больших масс матрикса. Они контролируют также все катаболические реакции в хряще.

В чем причина низкой метаболической активности хряща? Только в одном — в малом количестве клеток (1-10%) в единице объема ткани. В пересчете на чистую клеточную массу уровень метаболизма хондроцитов ничуть не меньше, чем у других клеток организма. Особенно низким метаболизмом отличаются суставные хрящи и пульподные ядра межпозвонковых дисков. Именно эти структуры отличаются самым малым количеством хондроцитов (1% от общей массы хряща) и именно они хуже всех других восстанавливаются после повреждений.

Окислительные процессы в хряще протекают в основном анаэробным (бескислородным) путем. Так, например, хондроциты пульпозных ядер межпозвоновых дисков на 99% питаются анаэробно и лишь на 1% аэробно. В среднем же кислородные окисление в хрящевой ткани как минимум в 50 раз менее интенсивно, чем в обычных тканях организма. Анаэробный характер окисления в хондроцитах — это защитно-приспособительная реакция, сложившаяся в процессе эволюции. И это неудивительно, если учесть, что хрящ не имеет (глаиновый, фиброзный) или почти не имеет (эластический) кровоснабжения. Если начать введение кислорода в пространство, пограничное с хрящом, то диффузия в хрящ О2 не только не улучшает его трофику, но, наоборот, резко ухудшает ее.

Насколько низка метаболическая активность хряща, можно понять из следующего сравнения. Белковый состав печени полностью обновляется за 4(!) дня. Коллаген хрящей обновляется всего лишь на 50% за 10(!) лет. Поэтому становится понятным, что любая травма хрящевой ткани практически неизлечима, если только не принять специальных мер, направленных на увеличение числа хондроцитов, которые сформируют новый матрикс.

Регенерация хрящевой ткани как физиологическая, так и репаративная (восстановительная) напрямую зависит от гормонального фона и модулирующего действия тех или иных гормонов. Так, например, глюкокортикоидные гормоны угнетают анаболические реакции в хондроцитах, ингибируют синтез коллагена и протеогликанов, вызывают дефицит глауроновой кислоты в синовиальной жидкости и в матриксе. И это угнетающее действие глюкокортикоидов более выражено, если оно сочетается со сдавлением (компрессией) хряща. В принципе, в этом нет ничего удивительного, если учесть, что глюкокортикоиды подавляют гликолиз — анаэробное окисление глюкозы в хряще. Регенерация без энергетического обеспечения становится попросту невозможной. Инсулин стимулирует синтез коллагена в матриксе хрящевой ткани, однако эта стимуляция невелика и носит опосредованный характер.

Самым сильным фактором, стимулирующим как физиологический, так и репаративный синтез в хрящевой ткани является соматотропный гормон. Сродство хрящей к соматотропному гормону отсутствует как таковое. Однако под действием соматотропного гормона в печени образуется инсулиноподобный фактор роста (ИРФ-1), который и обладает собственно анаболическим действием на все ткани, включая хрящевую. Сам по себе гормон роста способен оказывать анаболическое действие на клетки лишь в том случае, если его концентрация в 2000 раз превышает физиологическую. Такое возможно только в пробирке и полностью исключается в реальной жизни. Применяя соматотропин с репаративной целью необходимо помнить, что его влияние на синтез ИРФ-1 возможно лишь в условиях нормальной работы печени, при отсутствии серьезных заболеваний, иначе ИРФ-1 просто не будет синтезироваться и введение соматотропина не даст никакого результата. Способность соматомедина усиливать регенерацию хрящевой ткани в 100 раз превышает эффект от введения в организм инсулина и тестостерона. ИРФ-1 — это единственный фактор, вызывающий деление (размножение) хондроцитов. Другие анаболические факторы организма (а их довольно много) такой способностью не обладают.

Гормоны щитовидной железы могут усиливать восстановление и физиологический рост хрящей, если применять их в малых количествах, близких к физиологическим. Тогда они оказывают анаболическое действие на все ткани организма. В средних и больших количествах гормоны щитовидной железы оказывают еще большее анаболическое действие, однако, при этом они вызывают энергетический дефицит (термогенный эффект) и усиление катаболизма.
Катаболизм при этом усиливается в большей степени, чем анаболизм и активность деструктивных процессов превышает активность синтетическую. Как бы не усиливался анаболизм при увеличении доз тирсоидных гормонов, катаболизм усиливается еще больше и об этом необходимо помнить.
Тиреокальцитонин — единственный гормон щитовидной железы, усиливающий восстановление и рост хрящевой ткани в любых количествах, но для этого его необходимо применять изолированно, отдельно от тироксина и трийедиронина — «основных» гормонов щитовидной железы.
Гормон паращитовидных желез (паратиреоидный гормон) обладает умеренно стимулирующим действием на регенерацию хряща.

Тестостерон — основной андроген организма умеренно стимулирует биосинтетические процессы в хрящах, а эстрогены — женские половые гормоны, наоборот, тормозят ее.
Анаболические стероиды обладают способностью вызывать регенерацию хряща в намного большей степени, нежели чистый тестостерон и это неудивительно, если учесть, что они обладают анаболическим действием в несколько раз превышающим анаболическое действие тестостерона.

Интересно, что матрикс — порождение хондроцитов — живет своей самостоятельной жизнью. Он способен модулировать действие различных гормонов на хондроциты, ослабляя, либо усиливая их действие. Воздействуя на матрикс, можно изменить состояние хондроцитов как в лучшую, так и в худшую сторону. Удаление части матрикса вызывает немедленную интенсификацию биосинтеза недостающих в нем макромолекул. Более того, одновременно усиливается пролиферация (разрастание) хондроцитов. Количественные изменения в матриксе способны вызвать их качественные изменения.
Длительное ограничение движений в суставе (гипсовая иммобилизация и др.) приводит к уменьшению массы хрящей. Причина на удивление проста: в неподвижном суставе отсутствует перемешивание синовиальной жидкости. При этом диффузия молекул в хрящевую ткань замедляется и питание хондроцитов ухудшается. Недостаток прямой компрессивной нагрузки (на сжатие) так же приводит к ухудшению питания хондроцитов. Хрящу нужна хотя бы минимальная компрессионная нагрузка для поддержания нормальной трофики. Чрезмерная нагрузка на растяжение в эксперименте вызывает перерождение хряща с развитием грубых фиброзных волокон.

Очень сложное влияние на состояние внутрисуставных хрящей оказывает синовиальная оболочка. Она может как усиливать анаболизм хрящевой ткани, так и усиливать ее катаболизм. Удаление синовиальной оболочки резко ухудшает трофику хрящей, которая восстанавливается лишь после ее отрастания.
Хондроциты способны и к ауторегуляции. Они синтезируют специальные факторы роста, стимулирующие разрастание соседних хондроцитов. Пока их структура полностью не расшифрована. Известно лишь то, что они имеют полипептидную природу.

Все хрящи, но особенно хрящи опорно-двигательного аппарата постоянно подвергаются микротравматизации. В первую очередь это относится к межпозвонковыми дисками, наиболее уязвимая часть которых — пульпозное ядро. Уже в подростковом возрасте (начиная с 16-ти лет) начинаются дистрофические изменения в межпозвонковых дисках шейного отдела позвоночника. В пересчете на единицу поперечного сечения он несет нагрузку намного большую, чем любой другой отдел позвоночника, включая поясничный. Прежде всего дистрофические изменения касаются пульпозного ядра. Часть его клеток гибнет и замещается грубой соединительной тканью. Аналогичные, но менее выраженные изменения происходят и в самом межпозвоночном диске. Местами происходит очаговое разрастание хондроцитов. Организм стремится восстановить поврежденный хрящ и запускает репаративные процессы. Однако в местах гибели хондроцитов находится грубоволокнистая соединительная ткань — своеобразный рубец. И как раз в нем, там где они необходимы, хондроциты восстановиться не могут. Их разрастание происходит по периферии рубцевой ткани, где они, собственно и не нужны. Это приводит к ненужной деформации хряща, что еще более нарушает его функции. Основная функция хряща — опорная и стабилизирующая. При развитии дегенеративных и дистрофических процессов в межпозвоновых дисках позвонки теряют стабильность и постепенно становятся гипермобильными, легко смещаемыми. Их гипермобильность может вызвать сдавление окружающих их мягких тканей. Отек мягких тканей, в свою очередь, вызывает сдавление проходящих в них сосудов и нервов с развитием соответствующих симптомов. Организм стремится восстановить стабильность суставно-связочного аппарата. Происходит разрастание отдельных участков позвонков в виде своеобразных костных выростов — «усов». Эти «усы» сдавливают близлежащие мягкие ткани, вызывая их отек и вторичное сдавливание близлежащих сосудов и нервов. Весь комплекс изменений костно-хрящевого аппарата в данном случае носит название остеохондроза, хотя термин этот очень расплывчатый, неконкретный, и вообще-то, малонаучный.

Если в шейном отделе позвоночника негативные явления развиваются с подросткового возраста, то в поясничном отделе, где нагрузка на единицу поперечного сечения намного ниже — начиная с 25-30 лет. В целом они носят такой же морфологический характер, как и в шейном отделе, но отличаются клиническими (медицинскими) признаками. В шейном отделе позвоночника сквозь поперечные отростки шейных позвонков проходят крупные артерии, питающие все основание мозга и его стволовую часть, где находится жизненно важные центры (дыхания, кровообращения и т.д.). С развитием шейного остеохондроза происходит постепенное незаметное сдавливание этих артерий с развитием недостаточности мозгового кровообращения. При этом практически не бывает (или они бывают очень редко) никаких болевых признаков процесса. В поясничном отделе позвоночника картина несколько иная. Из этого отдела выходят нервные корешки, несущие чувствительные волокна от нижних конечностей и двигательные волокна к мышцам ног. Поясничный остеохондроз прежде всего проявляется различными болевыми симптомами, нарушением чувствительности и двигательной сферы. При этом никаких жизненно важных функций организма он не нарушает. Шейный остеохондроз никакими болевыми признаками себя не обнаруживает и особых неудобств не доставляет, однако может привести к серьезным нарушениям мозгового кровообращения, вплоть до инсультов с развитием параличей.

Шейный остеохондроз проявляется самыми разными симптомами, которые могут симулировать другие заболевания. Ухудшение мозгового кровообращения проявляется снижением работоспособности, быстрой утомляемостью, головной болью. Усталость глаз, мушки перед глазами, ощущение «песка в глазах» являются характерными признаками шейного остеохондроза. Звон в ушах и ухудшение слуха чаще говорят о нарушениях мозгового кровообращения вследствие остеохондроза, чем о заболеваниях слухового аппарата. По последним данным, 85% всех кровоизлияний в мозг в позднем возрасте вызваны не возрастной патологией артерий как таковой, а сдавлением шейных артерий в результате распространенного шейного остеохондроза.

Возрастные изменения эластических хрящей не носят фатального характера. Они выражаются в основном в оссификации — накоплении кальция и не приводят ко сколько-нибудь заметному нарушению функций.
В глиаминовых хрящах суставов уже начиная с 30-летнего возраста обнаруживается фибриляция — разволокнение хрящевой поверхности. При микроскопическом исследовании на поверхности хряща обнаруживаются разломы и расщепления. Расщепление хряща происходит как вертикальном, так и в горизонтальном направлении. При этом местами встречаются скопление клеток хрящевой ткани как ответная реакция организма на разрушение хряща. Иногда отмечается возрастное увеличение (!) толщины суставных хрящей как ответное действие на действия механических (тренировка) факторов. Возрастную эволюцию хрящей коленного сустава многие исследователи отмечают начиная уже с 40-летнего возраста. Наиболее существенное изменение, отмечаемое при старении хряща — это уменьшение содержания воды, что автоматически приводит к снижению его прочности.

Отсюда чрезвычайная сложность его посттравматического лечения. Более того, иногда непросто бывает даже сохранение нормального состояния хрящей в ходе обычного тренировочного процесса. Рост мышечной ткани опережает упрочнение суставно-связочного аппарата и в особенности его хрящевой части. Поэтому, рано или поздно, нагрузки достигают такой величины, которую хрящевая часть опорно-двигательного аппарата уже не может выдержать. В результате возникают «неизбежные» труднозалечиваемые травмы, из-за которых спортсмен иногда расстается со спортом. Самостоятельное восстановление хряща никогда не бывает полным. В лучшем случае хрящ восстанавливается на 50% от исходной величины. Однако это не значит, что дальнейшее его восстановление невозможно. Оно возможно при грамотном фармакологическом воздействии, призванном вызвать, с одной стороны, размножение хондроцитов, а с другой — изменение состояния матрикса хряща. Проблема восстановления хряща многократно усложняется еще и тем, что на месте погибшей хрящевой ткани развивается рубцовая ткань. Она не дает хрящу регенерировать в нужном месте. Компенсаторное разрастание участков хряща по соседству с местом повреждения приводит к его деформации, затрудняя задачу фармакологической стимуляции роста. Впрочем, все эти сложности преодолимы, если деформированный хрящ вначале подвергнуть хирургической коррекции.

Потенциальные возможности регенерации хряща достаточно велики. Он может регенерировать за счет собственного потенциала (размножение хондроцитов и рост матрикса) и, что не менее важно, за счет других видов соединительной ткани, которые имеют общее с ним происхождение. Примыкающие к хрящу ткани обладают способностью к переориентации своих клеток и превращению их в хрящеподобную ткань, которая неплохо справляется со своими функциями. Возьмем для примера самый частый вид повреждений — повреждение внутрисуставного хряща.

Источником регенерации являются:
1) сам хрящ;
2) синовиальная оболочка сустава, нарастающая с краев дефекта и превращающаяся в хрящеподобную ткань;
3) костные клетки, которые, не будем забывать, имеют хрящевое происхождение и при необходимости могут трансформироваться «обратно» в ткань, напоминающую по своему строению хрящевую;
4) клетки костного мозга, которые могут служить источником регенерации при глубоких повреждениях хрящей в сочетании с костным повреждением.

Сразу же после травмы наблюдается «взрыв» митоической активности хондроцитов, которые размножаются и формируют новый матрикс. Процесс этот наблюдается в течение 2-х недель после повреждения, однако ремодулирование поверхности хряща длится не менее 6-и месяцев, а полностью прекращается лишь через год. Качество «нового» хряща, конечно же, уступает качеству «старого». Если, например, поврежден гиалиновый внутрисуставный хрящ, то через 3-6 месяцев вырастает регенерат, имеющий характер гиалиново-фиброзного молодого хряща, а через 8-12 месяцев, он уже превращается в типичный фиброзный хрящ с матриксом, состоящим из плотно прилегающих друг к другу коллагеновых волокон.
Все исследователи хрящевой ткани единодушны в одном: хрящ не способен восстановить утраченное только за счет собственных внутренних ресурсов и механизмов. Их хватает максимум на 50% регенерата. Еще некоторый прирост регенерата осуществляется за счет других видов соединительной ткани, о которых мы уже говорили, но о полном 100% восстановлении хряща говорить все равно не приходится. Все это вносит изрядную долю пессимизма в оценку возможности выздоровления после сколько-нибудь серьезной травмы хряща, однако поводы для оптимизма все-таки есть. Достижения фармакологии и трансплантологии на сегодняшний день таковы, что можно говорить о полной компенсации даже очень серьезных хрящевых дефектов, как бы ни было это трудоемко.

Полнота восстановления поврежденной хрящевой ткани во многом зависит от качества мероприятий посттравматического периода, когда еще только формируется гематома1. Потом она пропитывается особого рода белком — фибрином, пропотевающим из плазмы крови, и превращается в рубцовую ткань. А она, как мы знаем, является серьезным препятствием для развития именно в этом месте полноценного регенерата. Поэтому сразу же после травмы необходимо предпринять все возможные меры для предотвращения развития гематомы и отека мягких тканей. Травмированный участок надо охладить. Для этого его обкладывают льдом, орошают хлорэтиленом. Если поврежден сустав конечности, то его можно просто поместить под струю холодной воды. Очень важна своевременная помощь квалифицированного врача-травматолога. Местные новокаиновые блокады не только обезболивают травмированный участок, но и препятствуют развитию отека и воспаления. Блокады можно повторять до тех пор, пока не минует острый период. Если в результате ушиба сустава произошло кровоизлияние в его полость — гемартроз, то необходимо как можно скорее откачать кровь из сустава. Сделать это несложно обычным шприцем. Иногда откачивать кровь и транссудат (жидкость, пропотевающую в полость сустава из плазмы крови) приходится несколько раз подряд. Ни в коем случае нельзя ждать, пока кровь «рассосется сама». Сгусток крови в результате выпадения особого рода белка — фибрина может развиться большое количество рубцовой ткани. Поврежденный сустав может так и остаться деформированным и увеличенным в размерах. Печальным примером может служить «кентус» у тех, кто занимается каратэ. Разбитые суставы пальцев увеличиваются в размерах из-за кровоизлияний и так остаются увеличенными из-за того, что из них вовремя не откачивают кровь. Несмотря на устрашающий вид кулаки с разбитыми суставами намного слабее обычных и очень легко повреждаются по повторном травмировании.

В подостром периоде, когда отек мягких тканей и болевой синдром существенно снижены, необходимо позаботиться, чтобы как можно полнее рассосалась поврежденная ткань. С этой целью применяет протеолитические ферменты (трипсин, хелеотрипсин, папаин и др.), которые вводятся в поврежденный участок при помощи электрофореза. Хороший эффект дают глюкокортикоидные гормоны — гидрокортизон, преднизолон и др. Как и протеолитические ферменты они вводятся местно, в пораженную область — будь то межпозвоновый диск или суставы конечностей. Гидрокортизон вводят с помощью ультразвука, а преднизолон — электрофорезом. Иногда вводят глюкокортикоидные гормоны в полости суставов, например, при лечении травм коленного сустава. У него самое сложное строение и лечить его травмы весьма непросто. Мениски — внутрисуставные хрящи в коленных суставах при повреждениях практически не срастаются. Поэтому, если имеются надрывы или отрывы частей менисков их необходимо как можно раньше удалить. Легче «вырастить» регенерат на месте удаленного мениска (а такой регенерат обязательно вырастает), чем добиться заживления мениска поврежденного. К счастью, в последние годы широкое развитие получила артроскопия и операции на коленном суставе становятся все более и более щадящими. Артроскоп позволяет с помощью волокнистой оптики заглянуть внутрь сустава не вскрывая его (проделываются лишь несколько отверстий). Через артроскоп же проводится и оперативное вмешательство. Иногда бывает так, что в результате травмы мениск остается целым, но отрывается от места своего прикрепления. Если раньше такой мениск всегда удаляли, то теперь все больше появляется специалистов, которые пришивают оторванный мениск на место. После освежения краев раны пришитый мениск прирастает на место.

Если при артроскопии обнаруживается разволокнение тех или иных хрящевых поверхностей, то их шлифуют, «скусывают» специальными кусачками волокна и участки деформированного хряща. Если этого не сделать, то последующие меры, принятые для усиления регенерации хрящевой ткани могут привести к росту деформированного хряща и нарушению его опорных функций.

При поверхностных повреждениях можно добиться полного восстановления хряща применяя сильнодействующие фармакологические средства. За последние 40 лет экспериментальных и клинических работ свою высокую эффективность доказал лишь один единственный препарат — соматотропный гормон (СТГ). Он стимулирует рост хрящевой ткани в 100 раз сильнее, чем введение тестостерона и инсулина. Еще больший эффект оказывает комбинированное введение СТГ и тиреокальцитонина — особого рода гормона щитовидной железы, который усиливает репарацию как костной, так и хрящевой ткани. Исключительная эффективность действия СТГ на репарацию хряща обусловлено тем, что он стимулирует непосредственно деление хондроцитов. Используя СТГ теоретически можно довести количество хондроцитов до любого нужного количества. Они, в свою очередь, восстанавливают матрикс до необходимого объема, синтезируя все его компоненты, начиная с коллагеновых волокон и кончая протеогликанами. Недостатком СТГ является то, что его нельзя применять местно, вводя непосредственно в зону поражения хрящевой ткани, поскольку действует он опосредованно. СТГ вызывает образование в печени инсулиноподобного фактора роста (ИРФ-1) который и оказывает сильнейший анаболический эффект. Парентеральное (инъекционное) его введение вызывает рост не только поврежденных хрящей, но и нормальных тоже, а это нежелательно, ведь в организме существуют кости, в которых хрящевые зоны роста не закрываются на протяжении всей жизни. Длительное введение больших доз СТГ в сформировавшийся организм может вызвать диспропорции скелета. Хотя следует отметить, что на пораженный хрящ он действует сильнее, и явных деформаций скелета при лечении СТГ в научной литературе не встречается.

В последние годы синтезирована лекарственная формы ИРФ-1, которую все шире применяют инъекционно вместо соматотропина. Поскольку ИРФ-1 действует непосредственно на ткани (в т.ч. и на хрящевую), то возникает заманчивая перспектива использовать его для местного введения (электрофорез, ультразвук и т.д.). Такое применение ИРФ-1 позволило бы локализовать его действие местом пораженного хряща и исключить действие на здоровые хрящи организма.
Неплохое действие на восстановление хряща и окружающего его соединительной ткани оказывают анаболические стероиды (АС). По эффективности они стоят на втором месте после ИРФ-1 и соматотропного гормона, хотя непосредственно деления хондроцитов они не вызывают. Анаболические стероиды, однако, ускоряют физиологическую регенерацию и потенцируют анаболическое действие инсулина и других эндогенных анаболических факторов, блокируют действие катаболических гормонов (глюкокортикоидов). Практическое применение АС в хирургической и травматологической практике доказало их высокую эффективность. Очень жаль, что до сих пор не разработаны лекарственные формы АС для локального применения. Это позволило бы создавать высокие концентрации лекарственного вещества именно в месте повреждения и предотвращать системные (на уровне всего организма) побочные действия. К сожалению, исследования в данной сфере никем не финансируются из-за причисления АС к допинговым средствам в спорте.

Некоторые исследователи в области молекулярной биологии представили очень убедительный материал, доказывающий, что стимуляторы (2-адренергических рецепторов способны симулировать анаболические эффекты соматомединов и, в частности, по отношению к хрящевой ткани. Механизм такого действия не вполне ясен. Не исключено, что просто повышается чувствительность печени к эндогенному соматотропному гормону и возрастает синтез в печени ИРФ-1. Одним из наиболее сильных избирательных стимуляторов (2-адренергических рецепторов является кленбутерол. Этот препарат не обладает гормональными эффектами и, в то же время, оказывает хорошее анаболическое действие. Подобно ИРФ-1 он стимулирует рост хрящевой ткани и может с успехом применяться в посттравматическом восстановительном периоде. Препаратов, стимулирующих (2-адренорецепторы много, но особо хотелось бы отметить такое старое и проверенное средство как адреналин. Адреналин — гормон мозгового вещества надпочечников даже при длительном курсовом применении не вызывает привыкания. В больших дозах адреналин воздействует в основном на а-адренорецепторы. Происходит сужение сосудов кожи, повышение артериального давления, подъем уровня сахара в крови. Малые дозы адреналина не затрагивают а-адренорецепторов, стимулируют (2-адренорецепторы. Расширяются сосуды мышц, снижаются уровень сахара в крови и артериальное давление. Развивается общее анаболическое действие и, в особенности по отношению к хрящевой ткани. Ежедневное введение малых (именно малых!) доз адреналина хорошо зарекомендовало себя как средство, способствующее регенерации.

Некоторые витамины в больших фармакологических дозировках способны существенно увеличить выброс в кровь эндогенного соматотропина. Пальму первенства здесь держит никотиновая кислота (витамин РР). Внутривенное введение сравнительно небольших доз никотиновой кислоты способно увеличить базальную секрецию СТГ в 2-3 раза. Увеличивает секрецию гормона роста витамин К, только применять его необходимо в умеренных дозах, чтобы не повысить чрезмерно свертываемость крови.

Несмотря на то, что матрикс хрящевой ткани является производным хондроцитов, изменение его состояния может улучшить и их деятельность. Состояние матрикса можно улучшить, применяя большие дозы аскорбиновой кислоты в сочетании с витамином Р. Особенно сильно аскорбиновая кислота влияет на состоянии коллагеновых структур. Поэтому ее традиционно используют для усиления синтеза коллагена, особенно в сочетании с глицином и анаболическими стероидами. Применяется также сочетание больших доз аскорбиновой кислоты с лизином, аланином и пролином.
Состояние хрящевого матрикса внутрисуставных хрящей можно временно улучшить с помощью веществ, вводимых в синовиальную жидкость. В последние годы особенно широко используется введение в сустав 15% раствора поливинилпирролидона, где он пребывает приблизительно 5-6 дней, затем процедуру повторяют, иногда несколько раз. Поливинилпирролидон служит своеобразным временным «протезом» внутрисуставной жидкости. Он улучшает трение внутрисуставных поверхностей, временно снимая нагрузку с суставного хряща. В случаях тяжелых, необратимых повреждениях хрящевой ткани используется протезирование, которое по мере развития оперативной техники дает все более обнадеживающие результаты. Уже никого не удивишь протезами межпозвонковых дисков. Делаются небезуспешные попытки протезирования внутрисуставных хрящей (менисков) коленных суставов.
Очень перспективным направлением является введение в поврежденные участки взвеси хондроцитов. Слабая регенерация хрящевой ткани, как мы помним, обусловлена малым числом хрящевых клеток (хондроцитов) на единицу массы хрящевой ткани. Чужеродные хондроциты, будучи введенными, скажем, в полость сустава не вызывают реакции отторжения, т.к. обладают слабой иммунногенной активностью. Они способны размножаться и образовывать новую хрящевую ткань. Применяют взвесь хондроцитов, полученную из хрящей крупного рогатого скота, умерших людей. Наиболее перспективным представляется использование эмбриональных (зародышевых) хрящевых клеток. Они вообще не вызывают иммунного ответа и, размножаясь, вызывают образование новой хрящевой ткани. К сожалению, все работы с зародышевыми клетками носят пока экспериментальный характер и не вошли в широкую практику. Но это — дело недалекого будущего. Проблема репарации хрящевой ткани в скором времени должна быть решена. Для этого уже есть все предпосылки.

1 Прекращение роста большинства костей в длину могут служить признаком того, что уже возможно лечение, например, анаболическими стероидами, которые приводят к преждевременному закрытию ростовой зоны хряща, если ростовые зоны узе закрыты, (что явствует из рентгеновского снимка лучевой кости молодого человека), то уже отсутствует опасность слишком быстро закрыть зоны роста применения стероиды, а значит, их применение можно начинать.

1 Дословно это означает «кровяная опухоль», но термин не совсем соответствует сути явления. Гематома — это диффузно поврежденная ткань, набухшая от крови.


Из журнала «Muscle Nutrition Review» № 8

Многие органы человека имеют в своей структуре хрящевую ткань, которая выполняет ряд важнейших функций. Эта особая разновидность соединительной ткани обладает неодинаковым строением в зависимости от локализации в организме, и этим объясняется ее различное предназначение.

Строение и функции хрящевой ткани тесно взаимосвязаны, каждый ее вид играет определенную роль.

Хрящевая ткань под микроскопом

Как любая ткань в организме, хрящевая содержит в себе два главных компонента. Это основное межклеточное вещество, или матрикс, и собственно клетки. Особенности строения хрящевой ткани человека в том, что массовая доля матрикса намного больше, чем суммарный клеточный вес. Это означает, что при гистологическом исследовании (изучение образца ткани под микроскопом) хрящевые клетки занимают незначительное пространство, а основная площадь полей зрения – это межклеточное вещество. Кроме того, несмотря на высокую плотность и твердость хрящевой ткани, матрикс содержит до 80% воды.

Строение межклеточного вещества хряща

Матрикс обладает неоднородной структурой и разделяется на две составляющие: основное, или аморфное, вещество, с массовой долей 60%, и хондриновые волокна, или фибриллы, занимающие 40% от общего веса матрикса. Эти волокна по строению похожи на коллагеновые образования, из которых состоит, например, кожа человека. Но отличаются от нее диффузным, неупорядоченным расположением фибрилл. Многие хрящевые образования имеют своеобразную капсулу, называемую надхрящницей. Она играет ведущую роль в восстановлении (регенерации) хряща.

Состав хряща

Хрящевая ткань по химическому составу представлена различными белковыми соединениями, мукополисахаридами, глюкозаминогликанами, комплексами гиалуроновой кислоты с белками и глюкозаминогликанами. Эти вещества – основа хрящевой ткани, причина ее высокой плотности и прочности. Но в то же время они обеспечивают проникновение в нее различных соединений и питательных веществ, необходимых для осуществления метаболизма и регенерации хряща. С возрастом продуцирование и содержание гиалуроновой кислоты и глюкозаминогликанов снижается, в результате в хрящевой ткани начинаются дегенеративно-дистрофические изменения. Для замедления прогрессирования этого процесса необходима заместительная терапия, которая обеспечивает нормальное функционирование хрящевой ткани.

Клеточный состав хряща

Строение хрящевой ткани человека таково, что хрящевые клетки, или хондроциты, не имеют четкой и упорядоченной структуры. Их локализация в межклеточном веществе напоминает скорее одиночные островки, состоящие из одной или нескольких клеточных единиц. Хондроциты могут иметь различный возраст, и подразделяются на молодые и недифференцированные клетки (хондробласты), и на полностью зрелые, называемые хондроцитами.

Хондробласты продуцируются надхрящницей и, постепенно продвигаясь в глубокие слои хрящевой ткани, дифференцируются и взрослеют. В начале своего развития они расположены не группами, а поодиночке, обладают круглой или овальной формой и имеют огромное ядро по сравнению с цитоплазмой. Уже на начальном этапе своего существования в хондробластах происходит активнейший метаболизм, направленный на продуцирование компонентов межклеточного вещества. Образуются новые белки, глюкозаминогликаны, протеогликаны, которые затем диффузным образом проникают в матрикс.

Гиалиновый и эластический хрящ

Важнейшая отличительная черта хондробластов, локализующихся сразу под надхрящницей, заключается в их способности к делению, образованию себе подобных. Эта особенность активно изучается учеными, так как дает огромные возможности для внедрения новейшего способа лечения суставных патологий. Ускорив и отрегулировав деление хондробластов, можно полностью восстанавливать поврежденную болезнью или травмой хрящевую ткань.

Взрослые дифференцированные хрящевые клетки, или хондроциты, локализуются в глубинных слоях хряща. Они располагаются компаниями, по 2-8 клеток, и называются «изогенными группами». Структура хондроцитов иная, чем у хондробластов, они имеют маленькое ядро и массивную цитоплазму, и уже не умеют делиться и образовывать другие хондроциты. Намного снижена и их метаболическая деятельность. Они способны только на очень умеренном уровне поддержать обменные процессы в матриксе хрящевой ткани.

Расположение элементов в хряще

При гистологическом изучении видно, что изогенная группа находится в хрящевой лакуне и окружена капсулой из переплетенных коллагеновых волокон. Хондроциты в ней находятся близко друг к другу, разделенные лишь белковыми молекулами, и могут иметь разнообразную форму: треугольную, овальную, круглую.

При заболеваниях хрящевой ткани появляется новый вид клеток: хондрокласты. Они намного крупнее хондробластов и хондроцитов, так как являются многоядерными. Эти клетки не участвуют ни в метаболизме, ни в регенегации хряща. Они – разрушители и «пожиратели» нормальных клеток и обеспечивают деструкцию и лизис хрящевой ткани при воспалительных или дистрофических процессах в ней.

Типы хрящевой ткани

Межклеточное вещество хряща может иметь различное строение, в зависимости от вида и расположения волокон. Поэтому различают 3 типа хряща:

  • Гиалиновый, или стекловидный.
  • Эластический, или сетчатый.
  • Волокнистый, или соединительнотканный.

Виды хрящей

Каждый тип характеризуется определенной степенью плотности, твердости и эластичности, а также локализацией в организме. Гиалиновая хрящевая ткань выстилает суставные поверхности костей, соединяет ребра с грудиной, содержится в трахее, бронхах, гортани. Хрящ эластический – это составная часть мелких и средних бронхов, гортани, из него выполнены и ушные раковины человека. Соединительная хрящевая ткань, или волокнистая, называется так потому, что соединяет связки или сухожилия мышц с гиалиновым хрящом (к примеру, в точках прикрепления сухожилий к телам или отросткам позвонков).

Кровоснабжение и иннервация хрящевой ткани

Структура хряща очень плотная, ее не пронизывают даже самые мелкие кровеносные сосуды (капилляры). Все питательные вещества и кислород, необходимые для жизнедеятельности хрящевой ткани, поступают в нее снаружи. Диффузным способом они проникают из рядом расположенных кровеносных сосудов, из надхрящницы или костной ткани, из синовиальной жидкости. Продукты распада удаляются также диффузно, и по венозным сосудам выводятся из хряща.

Молодой и зрелый хрящ

Нервные волокна лишь отдельными единичными ответвлениями проникают в поверхностные слои хряща из надхрящницы. Этим объясняется тот факт, что нервные импульсы из хрящевой ткани при ее заболеваниях не поступают, а болевой синдром появляется при реакции костных структур, когда хрящ практически уже разрушен.

Функции хрящевой ткани

Главнейшая функция хрящевой ткани – опорно-механическая, которая заключается в обеспечении прочных соединений различных частей скелета и разнообразнейших движений. Так, гиалиновый хрящ, являющийся важнейшей структурной частью суставов и выстилающий костные поверхности, делает возможным весь комплекс движений человека. Благодаря его физиологичному скольжению, они происходят плавно, комфортно и безболезненно, с соответствующей амплитудой.

Хрящи коленного сустава

Другие соединения между костями, не предусматривающие активных движений в них, также выполнены посредством прочной хрящевой ткани, в частности гиалинового типа. Это могут быть малоподвижные сращения костей, выполняющие опорную функцию. Например, в местах перехода ребер в грудинную кость.

Функции соединительной хрящевой ткани объясняются ее локализацией и заключаются в обеспечении подвижности различных частей скелета. Она делает возможным прочное и эластичное соединение мышечных сухожилий с костными поверхностями, покрытыми гиалиновым хрящом.

Другие функции хрящевой ткани человека также являются важными, так как формируют внешность, голос, обеспечивают нормальное дыхание. Прежде всего, это относится к хрящевой ткани, которая составляет основу ушных раковин и кончика носа. Хрящ, входящий в состав трахеи и бронхов, делает их подвижными и функциональными, а хрящевые структуры гортани участвуют в образовании индивидуального тембра человеческого голоса.

Хрящи носа

Хрящевая ткань без патологических изменений имеет огромное значение для здоровья человека и нормального качества жизни.

Хрящевая и костная ткани развиваются из склеротомной мезенхимы, относятся к тканям внутренней среды и, как и все другие ткани внутренней среды, состоят из клеток и межклеточного вещества. Межклеточное вещество здесь плотное, поэтому эти ткани выполняют опорно-механиче­скую функцию.

Хрящевые ткани (textus cartilagineus). Классифициру­ются на гиалиновую, эластическую и волокнистую. В основу классификации положены особенности организации меж­клеточного вещества. В состав хрящевой ткани входит 80 % воды, 10-15 % органических веществ и 5-7 % неорганиче­ских веществ.

Развитие хрящевой ткани, или хондрогенез, складывает­ся из 3 стадий: 1) образование хондрогенных островков; 2) об­разование первичной хрящевой ткани: 3) дифференцировка хрящевой ткани.

Во время 1-й стадии мезенхимные клетки соединяются в хондрогенные островки, клетки которых размножаются, дифференцируются в хондробласты. В образовавшихся хондробластах имеются гранулярная ЭПС, комплекс Гольджи, митохондрии. Хондробласты затем дифференцируются в хондроциты.

Во время 2-й стадии в хондроцитах хорошо развиты гра­нулярная ЭПС, комплекс Гольджи, митохондрии. Хондроци­ты активно синтезируют фибриллярный белок (коллаген II типа), из которого формируется межклеточное вещество, окрашивающееся оксифильно.

При наступлении 3-й стадии в хондроцитах более интен­сивно развивается гранулярная ЭПС, на которой вырабатываются и фибриллярные белки, и хондроитинсульфаты (хондроитинсерная кислота), которые окрашиваются основными краси­телями. Поэтому основное межклеточное вещество хрящевой ткани вокруг этих хондроцитов окрашено базофильно.

Вокруг хрящевого зачатка из мезенхимных клеток фор­мируется надхрящница, состоящая из 2 слоев: 1) наружного, более плотного, или волокнистого, и 2) внутреннего, более рыхлого, или хондрогенного, в котором содержатся прехон- дробласты и хондробласты.

Аппозиционный рост хряща, или рост путем наложения, характеризуется тем, что из надхрящницы выделяются хон­дробласты, которые накладываются на основное вещество хряща, дифференцируются в хондроциты и начинают выра­батывать межклеточное вещество хрящевой ткани.

Интерстициальный рост хрящевой ткани осуществляет­ся за счет хондроцитов, расположенных внутри хряща, кото­рые, во-первых, делятся путем митоза и, во-вторых, выраба­тывают межклеточное вещество, за счет чего увеличивается объем хрящевой ткани.

Клетки хрящевой ткани (chondrocytus). Составляют дифферон хондроцитов: стволовая клетка, полустволовая клетка (прехондробласт), хондробласт, хондроцит.

Хондробласты (chondroblastus) находятся во внутрен­нем слое надхрящницы, имеют органеллы общего значения: гранулярную ЭПС, комплекс Гольджи, митохондрии. Функ­ции хондробластов:


1) секретируют межклеточное вещество (фибриллярные белки);

2) в процессе дифференцировки пре­вращаются в хондроциты;

3) обладают способностью к митотическому делению.

Хондроциты располагаются в хрящевых лакунах. В ла­куне вначале находится 1 хондроцит, потом, в процессе его митотического деления, образуется 2, 4, 6 и т. д. клеток. Все они находятся в одной лакуне и образуют изогенную группу хондроцитов.

Хондроциты изогенной группы делятся на 3 типа: I, II, III.

Хондроциты I типа обладают способностью к митотическому делению, содержат комплекс Гольджи, митохондрии, гранулярную ЭПС и свободные рибосомы, имеют крупное ядро и небольшое количество цитоплазмы (большое ядерно-цитоплазматическое отношение). Эти хондроциты распола­гаются в молодом хряще.

Хондроциты II типа располагаются в зрелом хряще, ядерно-цитоплазматическое отношение их несколько уменыпается, так как увеличивается объем цитоплазмы; они утрачи­вают способность к митозу. В их цитоплазме хорошо развита гранулярная ЭПС; они секретируют белки и гликозаминогликаны (хондроитинсульфаты), поэтому основное межклеточ­ное вещество вокруг них окрашивается базофильно.

Хондроциты III типа находятся в старом хряще, утрачи­вают способность к синтезу гликозаминогликанов и выраба­тывают только белки, поэтому межклеточное вещество во­круг них окрашивается оксифильно. Следовательно, вокруг такой изогенной группы видно кольцо, окрашенное окси­фильно (белки выделены хондроцитами III типа), снаружи от этого кольца видно базофильно окрашенное кольцо (гликозаминогликаны секретированы хондроцитами II типа) и само наружное кольцо снова окрашено оксифильно (белки выделе­ны в то время, когда в хряще были только молодые хондроци­ты I типа). Таким образом, эти 3 разноокрашенных кольца во­круг изогенных групп характеризуют процесс образования и функции хондроцитов 3 типов.

Межклеточное вещество хрящевой ткани. Содержит органические вещества (преимущественно коллаген II типа), гликозаминогликаны, протеогликаны и белки неколлагено- вого типа. Чем больше протеогликанов, тем более гидрофиль­но межклеточное вещество, тем оно более упруго и более про­ницаемо. Через основное вещество со стороны надхрящницы диффузно проникают газы, молекулы воды, ионы солей и ми­кромолекулы. Однако макромолекулы не проникают. Макро­молекулы обладают антигенными свойствами, но, поскольку они не проникают в хрящ, пересаженный от одного человека другому хрящ хорошо приживается (не возникает иммунной реакции отторжения).

В основном веществе хряща имеются коллагеновые во­локна, состоящие из коллагена II типа. Ориентировка этих волокон зависит от силовых линий, а направление последних зависит от механического воздействия на хрящ. В межкле­точном веществе хрящевой ткани отсутствуют кровеносные и лимфатические сосуды, поэтому питание хрящевой ткани осуществляется путем диффузного поступления веществ со стороны сосудов надхрящницы.

Гиалиновая хрящевая ткань. Имеет голубовато-беловатый цвет, полупрозрачная, хрупкая, в организме находится в местах соединения ребер с грудиной, в стенках трахеи и бронхов, гортани, на суставных поверхностях. В зависимо­сти от того, где находится гиалиновый хрящ, он имеет различное строение. При нарушении питания гиалиновый хрящ подвергается обызвествлению.

Шалиновый хрящ на концах ребер покрыт надхрящницей, под которой располагается зона молодого хряща. Здесь нахо­дятся молодые хондроциты веретеновидной формы, располо­женные в хрящевых лакунах и способные вырабатывать только фибриллярные белки. Поэтому межклеточное веще­ство вокруг них окрашено оксифильно. Птубже хондроциты округляются. Еще глубже образуются изогенные группы хондроцитов, способные вырабатывать белки и хондроитинсерную кислоту, окрашивающуюся базофильно. Поэтому меж­клеточное вещество вокруг них окрашивается основными красителями. Еще глубже находятся изогенные группы, со­держащие еще более зрелые хондроциты, секретирующие только белки. Поэтому основное вещество вокруг них окра­шивается оксифильно.

Гиалиновый хрящ суставных поверхностей не имеет над­хрящницы и состоит из 3 нечетко отграниченных друг от друга зон. Наружная зона включает хондроциты веретеновидной формы, расположенные в лакунах параллельно по­верхности хряща. Птубже располагается столбчатая зона, клетки которой непрерывно делятся и образуют столбики; внутренняя зона делится базофильной линией на необызвествленную и обызвествленную части. Обызвествленная часть, прилежащая к костной ткани, содержит матриксные везикулы и кровеносные сосуды.

Питание этого хряща осуществляется из 2 источников: 1) за счет питательных веществ, находящихся в синевиальной жидкости сустава, и 2) за счет кровеносных сосудов, про­ходящих в обызвествленном хряще.

Эластическая хрящевая ткань. Имеет беловато-желто­ватую окраску, располагается в ушной раковине, стенке на­ружного слухового прохода, черпаловидном и рожковидном хрящах гортани, надгортаннике, в бронхах среднего кали­бра. От гиалинового хряща отличается тем, что эластиче­ский хрящ, во-первых, эластичный, так как в нем, кроме коллагеновых, содержатся эластические волокна, идущие в раз­личных направлениях и вплетающиеся в надхрящницу и окрашивающиеся орсеином в коричневый цвет; во-вторых, меньше содержит хондроитинсерной кислоты, липидов и гликогена; в-третьих, никогда не подвергается обызвест­влению. В то же время общий план строения эластической хрящевой ткани сходен с гиалиновым хрящом.

Волокнистый хрящ (cartilago fibrosa). Располагается в межпозвоночных дисках, лобковом сращении, местах при­крепления сухожилий к гиалиновому хрящу и в верхнече­люстных суставах. Этот хрящ характеризуется наличием 3 участков: 1) сухожильная часть; 2) собственно волокнистый хрящ; 3) гиалиновый хрящ. Там, где имеется сухожилие, пуч­ки коллагеновых волокон идут параллельно друг другу, между ними располагаются фиброциты; в волокнистой хрящевой ткани сохраняется параллельность расположения волокон, в лакунах хрящевого вещества располагаются хондроциты; гиалиновый хрящ имеет обычное строение.

Возрастные изменения хрящевой ткани. Наиболь­шие изменения наблюдаются в пожилом возрасте, когда уменьшается количество хондробластов в надхрящнице и число делящихся хрящевых клеток. В хондроцитах уме­ньшается количество гранулярной ЭПС, комплекса Гольджи и митохондрий, утрачивается способность хондроцитов к синтезу гликозаминогликанов и протеогликанов. Снижение количества протеогликанов приводит к умень­шению гидрофильности хрящевой ткани, ослаблению про­ницаемости хряща и поступлению питательных веществ. Это приводит к обызвествлению хряща, проникновению в него кровеносных сосудов и образованию костного веще­ства внутри хрящевого.

Костные ткани. Костные ткани характеризуются нали­чием в них плотного межклеточного вещества. Функции костных тканей: 1) опорно-механическая и 2) депонирование солей. В состав костной ткани входит 70 % минеральных со­лей, остальное - вода и органические вещества. Среди орга­нических веществ преобладает коллаген I типа, есть неколлагеновые белки, лимонная и хондроитинсерная кислоты, остеонектин (склеивающее вещество).

Классификация костных тканей основана на расположе­нии (ориентации) коллагеновых волокон. По этому признаку костные ткани подразделяются на: 1) ретикулофиброзную и 2) пластинчатую.

Ретикулофиброзная костная ткань характеризуется грубыми пучками коллагеновых волокон, ориентированных в различных направлениях. В межклеточном веществе име­ются остеоциты отростчатой формы, расположенные в кост­ных лакунах. После рождения эта ткань имеется в местах сращения костей черепа и местах прикрепления сухожилий к костной ткани.

Пластинчатая костная ткань характеризуется тем, что коллагеновые волокна располагаются параллельно друг другу и образуют пластинки.

Клетки костной ткани включают 2 дифферона: 1) дифферон остеоцитов (механоцитов), включает стволовые остеогенные клетки, полустволовые стромальные клетки, остео­бласты, остеоциты; 2) дифферон остеокластов. Стволовые скелетогенные (остеогенные) клетки могут дифференциро­ваться в различных направлениях (в остеобласты, клетки стромы красного костного мозга).

Дифферон остеоцитов (механоцитов). Остеобласты располагаются в надкостнице, эндосте, в каналах остеонов и в местах регенерации костной ткани; имеют удлиненную форму, длину 15-20 мкм, овальное ядро, оксифильную или базофильную цитоплазму, содержат хорошо развитую грану­лярную ЭПС, комплекс Гольджи и митохондрии, высокую ак­тивность ЩФ, не обладают способностью к митотическому делению.

Функции остеобластов:

1) секреторная (вырабатывают склеивающее вещество остеонектин, коллаген I типа, из ко­торого полимеризуются коллагеновые волокна, хондроитинсульфаты, лимонную кислоту);

2) участвуют в минерализа­ции костной ткани за счет выделения ЩФ.

Остеоциты расположены в костных лакунах, повторяю­щих по форме эти клетки. Отростки остеоцитов проникают в костные канальцы, отходящие от лакун. В остеоцитах сла­бо развиты органеллы общего значения, ядра с грубыми глыбками хроматина, не содержат ядрышек (не активны), снижена их функциональная активность по сравнению с остеобластами.

Функциональное значение остеоцитов заключается в под­держании гомеостаза костной ткани.

Дифферон остеокластов. 1-й клеткой является СКК, потом целый ряд развивающихся кроветворных клеток, за­тем моноцит, который через стенку капилляра мигрирует в костную ткань и превращается в остеокласт (макрофаг).

Размеры остеокластов достигают до 90 мкм, их форма - округлая, овальная, вытянутая, неправильная. С той поверх­ности, которая прилежит к костной ткани, в остеокласте имеются 2 зоны: 1) центральная, или гофрированная; 2) пе­риферическая (зона плотного прилегания). В зоне плотного прилегания мало органелл, она плотная. Значение этой зоны заключается в том, что остеокласт плотно прилегает к костному веществу и создает герметическое пространство в области гофрированной зоны.

Гофрированная зона представлена выростами, на по­верхности которых адсорбированы ферменты. Над гофриро­ванной зоной располагаются различные вакуоли, хорошо развитые лизосомы, содержащие протеолитические фер­менты, имеются митохондрии. В цитоплазме остеокластов насчитывается от 3 до нескольких десятков ядер. Остеоклас­ты локализуются в периваскулярных пространствах остео­нов и в местах регенерации костной ткани.

Функция остеокластов - разрушение межклеточного ве­щества костной ткани при помощи протеолитических фер­ментов лизосом. Для активации ферментов остеокласты вы­рабатывают углекислый газ, который при взаимодействии с водой превращается в угольную кислоту, и создается кислая среда, в которой хорошо растворяются компоненты костной ткани.

Развитие костной ткани (остеогенез). Костная ткань развивается 2 способами: 1) прямой остеогенез и 2) непрямой остеогенез. Прямой остеогенез характеризуется тем, что ко­стное вещество развивается непосредственно из мезенхимы. Таким путем развиваются плоские кости. Непрямой остеоге­нез характеризуется тем, что вначале образуется хрящевая модель будущей кости, состоящая из гиалинового хряща, по­том на месте этой модели формируется трубчатая кость.

Прямой остеогенез включает 4 стадии развития:

1) обра­зование остеогенных островков;

2) образование остеоидной ткани;

3) минерализация;

4) развитие на месте ретикулофиброзной костной ткани пластинчатой костной ткани.

1-я стадия характеризуется тем, что мезенхимные клетки образуют остеогенные островки. Клетки островков диффе­ренцируются в остеобласты, в цитоплазме которых хорошо развиты гранулярная ЭПС, комплекс Гольджи, митохондрии, содержится ЩФ.

Во время 2-й стадии остеобласты секретируют коллаген I типа, остеонектин, т. е. межклеточное вещество. В результа­те образуются остеоидные (не минерализованные) балки, имеющие вытянутую форму. На поверхности этих балок осте­областы продолжают откладывать межклеточное вещество, балки при этом удлиняются и утолщаются. В процессе секре­торной деятельности часть остеобластов замуровывает себя в межклеточном веществе и превращается в остеоциты, рас­положенные в лакунах. Вместо них из мезенхимы дифференцируются новые остеобласты, которые продолжают откла­дывать межклеточное вещество. Образовавшиеся балки сое­диняются своими концами, переплетаются, и образуется ос- теоидное вещество.

При наступлении 3-й стадии из остеобластов выделяется ЩФ, которая разлагает глицерофосфаты на фосфорную ки­слоту и углеводы. Фосфорная кислота соединяется с кальци­ем, в результате чего образуется фосфорнокислый кальций, который в виде аморфного вещества откладывается в остеоидной ткани. В результате дальнейших преобразований фосфорнокислый кальций превращается в кристаллы гидрооксиапатитов, которые приклеиваются друг к другу и к коллагеновым волокнам при помощи остеонектина.

В минерализации костной ткани принимают участие матриксные тельца, имеющие диаметр 1 мкм, содержащие гли­коген и ЩФ. В эти тельца откладывается кальций. Матриксные тельца образуются в результате выпячивания цитолеммы остеобластов и отделяются от этих клеток. Их участие в мине­рализации состоит из 2 периодов: 1) образование кристаллов внутри везикул и 2) разрыв мембраны везикулы, выделение кристалла в межклеточное пространство и приклеивание его к коллагеновому волокну при помощи остеонектина (скле­ивающего вещества, вырабатываемого остеобластами).

В результате минерализации образуется ретикулофиброз- ная ткань, которую еще называют первичной губчатой ко­стной тканью. Вокруг этой ткани из мезенхимных клеток формируется надкостница, состоящая из 2 слоев: 1) внутрен­него рыхлого остеогенного, в котором находятся остеобла­сты, и 2) наружного волокнистого, более плотного.

При 4-й стадии от надкостницы в образовавшуюся ко­стную ткань проникают кровеносные сосуды, остеобласты и мезенхимоциты. Через стенку капилляров в костное веще­ство мигрируют моноциты, которые дифференцируются в ос­теокласты. Остеокласты начинают разрушать ретикулофиброзную костную ткань, проделывая в ней полости различной формы. Вокруг кровеносных сосудов, находящихся в этих по­лостях (лакунах), остеобласты начинают формировать кост­ные пластинки, накладывая их одну на другую и замуровывая себя в костном веществе, превращаясь в остеоциты. Наслоен­ные друг на друга костные пластинки называются остеонами. Остеоны, переплетаясь, образуют губчатое вещество костной ткани. Между переплетающимися остеонами располагаются мезенхимные и остеогенные клетки, прослойки соединитель­ной ткани, в которых проходят кровеносные сосуды. Так ретикулофиброзная костная ткань превращается в пластинчатую.

За счет остеобластов внутреннего слоя надкостницы во­круг костного зачатка начинают формироваться общие на­ружные костные пластинки, наслаивающиеся одна на дру­гую, в результате чего вся формирующаяся кость окружается несколькими общими костными пластинками.

В дальнейшем сформировавшаяся пластинчатая костная ткань разрушается остеокластами, в образовавшихся лаку­нах вокруг сосудов остеобласты формируют новые остеоны. Такая перестройка костной ткани продолжается всю жизнь.

Непрямой остеогенез характеризуется тем, что вначале образуется хрящевая модель будущей кости, состоящая из гиалинового хряща. В этой модели имеются 1 диафиз и 2 эпи­физа. Процесс окостенения начинается сначала в области диафиза. При этом из надхрящницы выселяются остеобла­сты, которые образуют вокруг хрящевого диафиза перихондральную манжетку, состоящую из ретикулофиброзной (грубоволокнистой) костной ткани. Оказавшийся внутри этой манжетки хрящ диафиза подвергается дистрофическим из­менениям и минерализации. Хондроциты вакуолизируются, их ядра пикнотизируются, и в результате они превращаются в пузырчатые хондроциты.

К этому моменту надхрящница преобразуется в надкост­ницу. Со стороны последней через перихондральную костную манжетку к обызвествленному гиалиновому хрящу врастают кровеносные сосуды, вместе с которыми поступают мезен­химоциты, остеобласты и остеокласты. Остеокласты или хондрокласты начинают разрушать обызвествленный хрящ, образуя в нем лакуны различной формы. На стенках поло­стей (лакун) остеобласты откладывают костное вещество, на­зываемое эндохондральной костью. Особенность эндохондральной кости состоит в том, что в ее костном веществе содержатся участки омелевшего (обызвествленного) хряща.

Процесс образования энхондральной кости называется энхондральным окостенением. Энхондральная кость снова разрушается остеокластами, в результате чего образуется ко­стномозговая полость. Мезенхимоциты, проникшие в эту по­лость, образуют эндост, который соответствует периосту (надкостнице) и выстилает костномозговую полость изнутри.

Из мезенхимы костномозговой полости формируется рети­кулярная строма красного костного мозга. В эту строму прони­кают стволовые клетки, и начинается процесс кроветворения.

Ретикулофиброзная ткань перихондральной костной ман­жетки также разрушается остеокластами, которые проделыва­ют в ней удлиненные полости. Вокруг кровеносных сосудов этих полостей остеобласты вырабатывают костные пластинки ци­линдрической формы, наслаивая их друг на друга, в результате чего образуются остеоны, ориентированные вдоль продольной оси трубчатой кости. Одновременно с этим со стороны надкост­ницы выделяются остеобласты, которые образуют вокруг диафиза общие наружные костные пластинки, тоже наслаивая их друг на друга. В то же время со стороны эндоста остеобласты образуют внутренние общие костные пластинки. В результате этого образуется 3 слоя диафиза: 1) наружные общие костные пластинки; 2) слой остеонов; 3) внутренние общие костные пла­стинки и внутри - костномозговая полость.

Развитие эпифиза: в тот момент, когда вокруг диафиза образовалась перихондральная костная манжетка, хряще­вой эпифиз продолжает расти. В эпифизе выделяют 3 зоны:

1) наружная, или дистальная, часть, которая называется зоной свободных хондроцитов (zona reservata);

2) столбча­тая зона хондроцитов (zona collumnare), в которой хондроциты делятся путем митоза и накладываются друг на друга в виде столбиков;

3) зона пузырчатых хондроцитов, харак­теризующаяся тем, что хондроциты гипертрофируются, вакуолизируются и превращаются в пузырчатые, а межкле­точное вещество вокруг них минерализуется.

Со стороны диафиза обызвествленный хрящевой эпифиз подвергается разрушению остеокластами, на стенках обра­зовавшихся полостей остеобласты откладывают костное ве­щество. Так растет костный диафиз за счет обызвествленной пузырчатой зоны хрящевого эпифиза.

Хрящевой эпифиз увеличивается в размерах, поэтому за­трудняется проникновение питательных веществ в центр эпифиза, вследствие чего он подвергается минерализации. К минерализованному центру хрящевого эпифиза врастают кровеносные сосуды, вместе с которыми в это место поступа­ют остеокласты и остеобласты, благодаря которым формиру­ется костное вещество эпифиза. Однако между костным эпи­физом и диафизом остается хрящ, называемый метаэпифи- зарной пластинкой роста. За счет этой пластинки продолжа­ется рост трубчатой кости в длину - у юношей до 25-летнего возраста, у девушек до 18 лет.

В метаэпифизарной пластинке роста различают 3 зоны:

1) пограничная зона, расположенная на границе с костным эпифизом, где клетки располагаются неупорядоченно;

2) столбчатая зона, где пролиферирующие хондроциты на­кладываются друг на друга и располагаются столбиками;

3) зона пузырчатых хондроцитов, вокруг которых - обызвествленное межклеточное вещество. Эта зона постоянно разру­шается остеокластами и при помощи остеобластов превра­щается в костную ткань диафиза.

Таким образом, в метаэпифизарной пластинке роста од­новременно происходят 2 процесса: 1) пролиферация, т. е. размножение хондроцитов, за счет чего эта пластинка дол­жна была бы утолщаться, и 2) резорбция обызвествленной части этой пластинки и замена ее на костную ткань. Поэтому эта пластинка не утолщается и не истончается до того мо­мента прекращения роста кости в длину. Рост кости прекра­щается с исчезновением метаэпифизарной пластинки.

Рост кости в толщину осуществляется за счет остеобла­стов надкостницы, благодаря которым образуются общие костные пластинки, накладывающиеся друт не друга.

Пластинчатая костная ткань подразделяется на: 1) ком­пактное костное вещество (диафиз трубчатых костей) и 2) губчатое костное вещество (эпифиз трубчатых костей и плоские кости). Структурно-функциональной единицей тонковолокнистой (пластинчатой) костной ткани (губчатой или компактной) является костная пластинка . Структурно-функциональной единицей компактного вещества кости яв­ляется остеон .

Строение диафиза трубчатой кости (компактное веще­ство костной ткани). Диафиз трубчатой кости снаружи по­крыт надкостницей, а со стороны костномозговой полости - эндостом. Между надкостницей и эндостом располагается компактное костное вещество диафиза, состоящее из 3 слоев:

1) слой наружных общих костных пластинок;

2) слой остеонов и вставочных пластинок;

3) слой внутренних общих кост­ных пластинок.

Слой наружных костных пластинок представлен 8-10 костными пластинками, толщиной 4-15 мкм. В каждой ко­стной пластинке коллагеновые волокна расположены па­раллельно, причем волокна одной пластинки расположены под углом по отношению к волокнам соседней пластинки. Со стороны надкостницы в слой наружных костных пла­стинок проникают коллагеновые (шарпеевские) волокна и прободающие каналы, в которых проходят артерии (пи­тающие сосуды). В каждой костной пластинке имеются остеоциты отростчатой формы, расположенные в костных лакунах.

Наружные общие костные пластинки имеют форму не­замкнутых цилиндров. Они накладываются друг на друга, окружая диафиз со всех сторон.

Слой остеонов состоит из остеонов и вставочных пласти­нок. Остеон - это структурная единица костной ткани, со­стоящая из костных пластинок цилиндрической формы, как бы вставленных одна в другую. В центре остеона находится канал, в котором проходят кровеносные сосуды. Каналы ос­теонов соединяются друг с другом прободающими каналами. Через эти каналы кровеносные сосуды остеонов анастомозируют друг с другом. Через систему сосудов, проходящих в ка­налах остеонов и прободающих каналах, кровь поступает в костномозговую полость. Остеоны соединяются друг с дру­гом при помощи спайных линий.

Вставочные пластинки, расположенные между остеонами, являются остатками разрушенных остеонов первичной генерации. Во вставочных пластинках и пластинках остео­нов имеются остеоциты в костных лакунах. Лакуны соединя­ются друг с другом при помощи костных канальцев. В этих канальцах циркулирует жидкость, питающая костную ткань, поэтому эти канальцы называются питательными костными канальцами.

Внутренние общие костные пластинки имеют такое же строение, как и наружные костные пластинки, и отделяют слой остеонов от костномозговой полости.

Губчатое вещество костной ткани тоже представляет собой пластинчатую (тонковолокнистую) костную ткань и тоже состоит из остеонов, образованных костными пла­стинками. Эти остеоны переплетаются друг с другом и име­ют несколько видоизмененную форму. Структурной едини­цей губчатого вещества является костная пластинка . Тон­коволокнистая костная ткань образована коллагеновыми волокнами, сформированными в пластинки. Между балка­ми губчатого вещества костной ткани располагается крас­ный костный мозг.

В трофике костной ткани принимают участие сосуды периоста, сосуды каналов остеонов, сосуды прободающих ка­налов и сосуды эндоста. Питательные вещества из периваскулярных пространств поступают в питательные костные канальцы и распространяются по этим канальцам по всей костной ткани. Питательные вещества не могут диффузно проникать в межклеточное вещество костной ткани, так как этому препятствует его минерализация.

Перестройка костной ткани и влияние внутренних и внешних факторов на процесс перестройки. Костная ткань в течение всей жизни подвергается перестройке с участием остеокластов и остеобластов. Остеокласты раз­рушают костное вещество, проделывая в нем полости. Во­круг кровеносных сосудов этих полостей остеобласты вы­рабатывают костное вещество в виде костных пластинок цилиндрической формы, накладывающихся друг на друга. Таким образом, на месте старых разрушенных остеонов по­являются новые.

На процесс перестройки оказывают влияние внешние и внутренние факторы. К внешним факторам относится прежде всего механическая нагрузка. При ее увеличении по­вышается активность остеобластов, в результате функцио­нальной деятельности которых увеличивается количество остеонов, что способствует уплотнению и повышению проч­ности костной ткани.

При пониженной механической нагрузке повышается ак­тивность остеокластов, которые разрушают межклеточное вещество костной ткани, ослабляя ее плотность и прочность. Особенно повышается активность остеокластов в состоянии невесомости. Поэтому космонавты вынуждены выполнять специальные упражнения с нагрузкой на костную систему, а иначе их костный скелет изменился бы настолько, что не смог бы выполнять опорно-механическую функцию.

Пьезоэлектрический эффект характеризуется тем, что на вогнутой и выпуклой поверхностях костных пластинок ко­стной ткани образуется электрический потенциал. На той поверхности костной пластинки, где имеется положитель­ный потенциал, активируются остеокласты, разрушающие костное вещество; где отрицательный потенциал - активи­руются остеобласты, вырабатывающие костное вещество. Пьезоэлектрический эффект используется хирургами. В том месте, где нужно нарастить кость, они искусственно создают отрицательный потенциал.

Особенно сильное влияние на перестройку костной ткани оказывают витамины С, D, А. Под влиянием витамина С ак­тивируются остеобласты, повышается выделение молекул коллагена, из которых полимеризуются коллагеновые волок­на; повышается активность ЩФ остеобластов, в результате чего усиливается минерализация костного вещества. При недостатке витамина С эти процессы ослабляются, костная ткань размягчается, снижается ее плотность.

При недостатке витамина D нарушается минерализация костной ткани, которая при этом размягчается; отмечается деформация костей, что наблюдается в детском возрасте. Та­кое заболевание называется рахитом.

При избытке витамина А активируются остеокласты, раз­рушающие костное вещество.

Влияние внутренних факторов. Влияние гормонов. При недостатке тироксина снижается активность остеобла­стов, в результате чего наблюдается картина, напоминаю­щая таковую при недостатке витамина С, т. е. нарушаются образование коллагеновых волокон и минерализация ко­стной ткани.

Влияние избытка кальцитонина заключается в повыше­нии минерализации костной ткани, так как при этом каль­ций крови откладывается в костях.

Влияние избытка паратирина заключается в том, что ак­тивируется функция остеокластов, так как на их цитолемме есть рецепторы к паратирину. Освободившийся после разру­шения костного вещества кальций поступает в кровь, т. е. происходит деминерализация костной ткани.

Влияние недостатка соматотропина гипофиза проявля­ется в нарушении роста костей.

Влияние недостатка половых гормонов в юношеском воз­расте характеризуется тем, что замедляется обратное разви­тие метаэпифизарной пластинки роста, поэтому трубчатые кости становятся непомерно длинными. При избытке поло­вых гормонов в юношеском возрасте наступает преждевре­менное исчезновение метаэпифизарной пластинки роста и прекращается рост трубчатых костей конечностей в длину.

При недостатке половых гормонов у женщин после насту­пления климактерического периода наблюдается нарушение структуры костной ткани. Однако это легко исправляется назначением соответствующих половых гормонов.

Регенерация костной ткани при повреждении. В ре­зультате повреждений обычно наблюдаются переломы ко­стей конечностей. В результате перелома образуются 2, а иногда и больше ее отломков. После перелома кости к кон­цам обломков мигрируют остеокласты, разрушающие некротизированные участки костной ткани, т. е. подчищают кон­цы обломков. Затем с участием остеобластов вырабатывает­ся костное вещество, соединяющее концы обломков. Сначала

образуется остеоидное вещество (мягкая костная мозоль), ко­торое затем подвергается минерализации (твердая костная мозоль). Процесс срастания костных обломков можно уско­рить, если в первые сутки после перелома назначить больно­му витамин А, повышающий активность остеокластов, т. е. очистку концов обломков, а потом назначить витамин С, активирующий функцию остеобластов, вырабатывающих коллаген I типа, гликозаминогликаны и остенектин и уча­ствующих в минерализации мягкой мозоли. При недостатке витамина С сращение обломков костей будет замедленным, при этом может образоваться ложный сустав.

Соединения костей. Соединения костей подразделяются на: 1) непрерывные (синдесмозы, синхондрозы и синостозы) и 2) прерывные (суставы).

Синдесмозы характеризуются соединением костей при помощи плотной соединительной ткани (теменные швы че­репа, соединительнотканная мембрана между локтевой и лу­чевой костями предплечья).

Синхондрозы - соединение при помощи хряща (межпо­звоночные диски).

Синостозы - плотные соединения костей без волокни­стой соединительной ткани (соединения тазовых костей).

Суставы состоят и из сочлененных поверхностей, покрытых хрящом, и суставной сумки (капсулы). Суставная капсула состо­ит из 2 слоев: 1) наружного и 2) внутреннего (синевиального).

Наружный слой представлен плотной оформленной сое­динительной тканью.

Внутренний (синевиальный) слой состоит из:

1) глубокого волокнистого коллагеново-эластического слоя;

2) поверхност­ного волокнистого коллагеново-эластического слоя;

3) по­кровного слоя, прилежащего к поверхностному коллагеново-волокнистому.

Покровный слой состоит из клеток - синевиацитов 3 ви­дов: а) макрофагальных; б) синовиальных фибробластов и в) промежуточных.