Использование теплового расширения в природе и технике. «Тепловое расширение тел

Экзамен по физике за 8 класс.

2. Тепловое движение.

Все тела состоят из молекул, которые находятся в непрерывном движении. Нам уже известно что, диффузия при более высокой температуре происходит быстрее. Это означает что скорость движения молекул и температура связаны между собой. При повышении температуры скорость движения молекул увеличивается, при понижении уменьшается. Следовательно, температура тела зависит от скорости движения молекул. Явления, связанные с нагреванием и охлаждением тел называются тепловыми. Например, охлаждение воздуха, таяние льда. Каждая молекула в теле движется по очень сложной траектории. Так, например частицы газа движутся на больших скоростях в разных направлениях, сталкиваются друг с другом и со стенками сосуда.

Беспорядочное движение частиц, из которых состоит тело, называется тепловым движением .

Расширение твердых тел.

При нагревании амплитуда колебания молекул увеличивается, расстояние между ними возрастает, и тело заполняет больший объем. Твердые тела при нагревании расширяются во всех направлениях.

Расширение жидкостей.

Жидкости расширяются значительно сильнее твердых тел. Они также расширяются во всех направлениях. Вследствие большой подвижности молекул жидкость принимает форму сосуда, в котором находится.

Учет и использование теплового расширения в технике.

В быту и технике тепловое расширение имеет очень большое значение. На электрических железных дорогах необходимо зимой и летом сохранять постоянное натяжение провода, питающего энергией электровозы. Для этого натяжение провода создается тросом, один конец которого соединен с проводом, а другой перекинут через блок и к нему подвешен груз.

При сооружении моста один конец фермы кладется на катки. Если этого не сделать, то при расширении летом и сжатии зимой ферма будет расшатывать устои, на которые опирается мост.

При изготовлении ламп накаливания часть провода проходящего внутри стекла необходимо делать из такого материала, коэффициент расширения которого такой же как у стекла иначе оно может треснуть.

Приведенные выше примеры далеко не исчерпывают роль и различные применения теплового расширения в быту и технике.

Термометры.

Термометры всегда показывают собственную температуру. Только через определенное время эта температура становится равной температуре окружающей среды. Иначе говоря, термометрам свойственна определенная инерционность.

Жидкостные термометры.

Длина столбика жидкости ртути, спирта, толуола, пентана и других служит мерой температуры. Интервал измерения ограничен температурами кипения и замерзания жидкости в термометре.

Металлические термометры.

Металлический термометр представляет собой биметаллическую пластину, т. е пластинку, сваренную из полосок двух различных металлов. Вследствие разницы в тепловых расширениях металлов пластинка при нагревании будет изгибаться. Из длинной пластинки сгибают спираль. Наружный конец спирали закрепляют, а к внутреннему прикрепляют стрелку, которая указывает по шкале определённую температуру

Термометры сопротивления.

Сопротивление металлов меняется с температурой. Сила тока в цепи зависит от сопротивления проводника, а следовательно и от его температуры. Преимущество термометра сопротивления состоит в том, что измерительный прибор и место, где измеряется температура могут быть разнесены на приличное расстояние.

Особенности теплового расширения воды.

Коэффициент объемного расширения слабо зависит от температуры. Вода является исключением и коэффициент расширения воды сильно зависит от температуры, а в интервале от 0 до 4 градусов С принимает отрицательное значение. Другими словами объём воды уменьшается от 0 до 4 градусов С, а затем возрастает.

Значение теплового расширения в природе.

Тепловое расширение воздуха играет большую роль в явлениях природы. Тепловое расширение воздуха создает движение воздушных масс в вертикальном направлении (нагретый, менее плотный воздух поднимается вверх, холодный и менее плотный вниз). Неравномерный нагрев воздуха в разных частях земли приводит к возникновению ветра. Неравномерный разогрев воды создает течения в океанах.

При нагревании и охлаждении горных пород вследствие суточных и годовых колебаний температуры (если состав породы неоднороден) образуются трещины, что способствует разрушению пород.

    Дифференциальное расширение имеет большое прикладное значение. Иногда очень трудно открыть метал-лические завинчивающиеся крышки на стеклянных или пластмассовых бутыл-ках. Если верхнюю часть бутылки подержать под струей горячей воды, то металл расширится больше, чем стекло или пластмасса, и крышка легко откроется.

    Стеклянная пробка, плотно вошедшая в горлышко стеклянной бутылки, также может быть вынута, если горлышко подержать под струей горячей воды. Хотя коэффициент расширения горлышка такой же, как и у пробки, но стекло очень , и горлышко расширится до того, как пробка станет горячей, и пробку можно легко вынуть.

    Расширение стекла часто становится предметом неприятностей дома. При наполнении стеклянной посуды горячей жидкостью она часто лопается. Причина состоит в том, что часть стекла, соприкасающаяся с горячей жидкостью, очень быстро приобретает температуру жидкости и расширяется, в то время как остальная часть остается холодной, поскольку стекло плохой проводник.

    В результате внутри стекла устанавливается напряжение, и посуда лопается. При приготовлении джема предусмотрительный повар подогревает сосуд в духовке, прежде чем наполнить его джемом. Этим достигается то, что и стекло, и джем нагреваются до примерно одинаковой температуры. Ценная посуда из граненого стекла будет сохранена, если вы подумаете, стоит ли ее опускать в горячую воду.

    Различное тепловое расширение в быту

    Период маятника зависит от длины самого маятника. Когда температура повышается, длина маятника увеличивается и увеличивается период его колебаний. Маятник колеблется более медленно. На рисунке показаны два вида компенсированного маятника. На рисунке 1, а стержень сделан из инвара, а тело маятника-чечевица — из стали.

    Расширение инвара по направлению вниз компенсируется расширением чечевицы вверх. При этом положение центра тяжести, а следовательно, и остаются неизменными. Для установки нужного периода колебаний маятника положение чечевицы регулируется винтом. Будучи однажды установленным в нужном положении, такой маятник самокомпенсируется.

    На рисунке 1, б показан более сложный маятник. Незаштрихованные стержни имеют больший и расширяются достаточно, чтобы компенсировать расширение более длинных заштрихованных стержней. В наше время, когда большинство зданий снабжено центральным отоплением, в них поддерживается более или менее постоянная температура, но по-прежнему важно компенсировать тепловые эффекты.

    В термостате газовой духовки (рис. 2) используется различное тепловое расширение металлов. Газ подается по вводной трубе и проходит через отверстия D, Е и F к горелкам. Цилиндр В сделан из латуни, а стержень А — из инвара. Когда температура духовки поднимается, латунь расширяется гораздо сильнее инвара, заставляя клапан С сдвинуться влево и закрыть отверстия Е и F.

    Таким образом подача газа в духовку сокращается, и газ горит слабо. Отверстие D необходимо для приема газа, чтобы не дать погаснуть горелкам, когда клапан закрыт. По мере охлаждения цилиндр В сжимается, и клапан С сдвигается вправо, допуская большее количество газа к горелкам. Внешний регулятор G позволяет закручивать или отпускать клапан С, таким образом уменьшая или увеличивая струю газа и сокращая или повышая температуру в духовке.

  • Хотя линейные размеры и объемы тел при изменении температуры меняются мало, тем не менее это изменение нередко приходится учитывать в практике; в то же время это явление широко используется в быту и технике.

Учет теплового расширения тел

Изменение размеров твердых тел вследствие теплового расширения приводит к появлению огромных сил упругости, если другие тела препятствуют этому изменению размеров. Например, стальная мостовая балка сечением 100 см 2 при нагревании от -40 °С зимой до +40 °С летом, если опоры препятствуют ее удлинению, создает давление на опоры (напряжение) до 1,6 10 8 Па, т. е. действует на опоры с силой 1,6 10 6 Н.

Приведенные значения могут быть получены из закона Гука и формулы (9.2.1) для теплового расширения тел.

Согласно закону Гука механическое напряжение где - относительное удлинение, a E - модуль Юнга. Согласно (9.2.1) . Подставляя это значение относительного удлинения в формулу закона Гука, получим

У стали модуль Юнга Е = 2,1 10 11 Па, температурный коэффициент линейного расширения α 1 = 9 10 -6 К -1 . Подставив эти данные в выражение (9.4.1), получим, что при Δt = 80 °С механическое напряжение σ = 1,6 10 8 Па.

Так как S = 10 -2 м 2 , то сила F = σS = 1,6 10 6 Н.

Для демонстрации сил, появляющихся при охлаждении металлического стержня, можно проделать следующий опыт. Нагреем железный стержень с отверстием на конце, в которое вставлен чугунный стерженек (рис. 9.5). Затем вставим этот стержень в массивную металлическую подставку с пазами. При охлаждении стержень сокращается, и в нем возникают столь большие силы упругости, что чугунный стерженек ломается.

Рис. 9.5

Тепловое расширение тел нужно учитывать при конструировании многих сооружений. Необходимо принимать меры для того, чтобы тела могли свободно расширяться или сжиматься при изменении температуры.

Нельзя, например, туго натягивать телеграфные провода, а также провода линий электропередачи (ЛЭП) между опорами. Летом провисание проводов заметно больше, чем зимой.

Металлические паропроводы, а также трубы водяного отопления приходится снабжать изгибами (компенсаторами) в виде петель (рис. 9.6).

Рис. 9.6

Внутренние напряжения могут возникать при неравномерном нагревании однородного тела. Например, стеклянная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. В первую очередь происходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давление на внешние холодные части. Поэтому может произойти разрушение сосуда. Тонкий же стакан не лопается при наливании в него горячей воды, так как его внутренняя и внешняя части одинаково быстро прогреваются.

Очень малый температурный коэффициент линейного расширения имеет кварцевое стекло. Такое стекло выдерживает, не трескаясь, неравномерное нагревание или охлаждение. Например, в раскаленную докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается.

Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково. Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон - затвердевший бетонный раствор, залитый в стальную решетку - арматуру (рис. 9.7). Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.

Рис. 9.7

Еще несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава (железа и никеля), имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковый коэффициент линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.

Значительные силы могут развиваться и жидкостью, если нагревать ее в замкнутом сосуде, не позволяющем жидкости расширяться. Эти силы могут привести к разрушению сосудов, в которых содержится жидкость. Поэтому с этим свойством жидкости тоже приходится считаться. Например, системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой. При нагревании воды в системе труб небольшая часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб. По этой же причине в силовом трансформаторе с масляным охлаждением наверху имеется расширительный бак для масла. При повышении температуры уровень масла в баке повышается, при охлаждении масла - понижается.

Использование теплового расширения в технике

Тепловое расширение тел находит широкое применение в технике. Приведем лишь несколько примеров. Две разнородные пластинки (например, железная и медная), сваренные вместе, образуют так называемую биметаллическую пластинку (рис. 9.8).

Рис. 9.8

При нагревании такие пластинки изгибаются вследствие того, что одна расширяется сильнее другой. Та из полосок (медная), которая расширяется больше, оказывается всегда с выпуклой стороны (рис. 9.9). Это свойство биметаллических пластинок широко используется для измерения температуры и ее регулирования.

Рис. 9.9

Терморегулятор

На рисунке 9.10 схематически изображено устройство одного из типов регуляторов температуры. Биметаллическая дуга 1 при изменении температуры изменяет свою кривизну. К ее свободному концу прикреплена металлическая пластинка 2, которая при раскручивании дуги прикасается к контакту 3, а при закручивании отходит от него. Если, например, контакт 3 и пластинка 2 присоединены к концам 4, 5 электрической цепи, содержащей нагревательный прибор, то при соприкосновении контакта и пластинки электрическая цепь замкнется: прибор начнет нагревать помещение. Биметаллическая дуга 1 при нагревании начнет закручиваться и при определенной температуре отсоединит пластинку 2 от контакта 3: цепь разорвется, нагревание прекратится.

Рис. 9.10

При охлаждении дуга 1, раскручиваясь, снова заставит включиться нагревательный прибор. Таким образом, температура помещения будет поддерживаться на данном уровне. Подобный терморегулятор устанавливают в инкубаторах, где требуется поддерживать температуру постоянной. В быту терморегуляторы установлены в холодильниках, электроутюгах и т. д. Обод (бандаж) колеса железнодорожного вагона изготавливают из стали, остальную часть колеса делают из более дешевого металла - чугуна. Бандажи на колеса надевают в нагретом состоянии. После охлаждения они сжимаются и поэтому держатся прочно.

Также в нагретом состоянии надевают шкивы, подшипники на валы, железные обручи на деревянные бочки и т. д. Свойство жидкостей расширяться при нагревании и сжиматься при охлаждении используется в приборах, служащих для измерения температуры - термометрах. В качестве жидкостей для изготовления термометров применяют ртуть, спирт и др.

При расширении или сжатии тел возникают огромные механические напряжения, если другие тела препятствуют изменению размеров. В технике используются биметаллические пластинки, изменяющие свою форму при нагревании.

Термическим расширением называется изменение размеров и объёма тела под воздействием температуры.

При изменении температуры изменяются размеры твёрдых тел. Расширение под воздействием температуры характеризуется коэффициентом линейного термического расширения .

Изменение линейных размеров тела описывается формулой: l = l 0 (1 + α ⋅ Δ T) , где

l - длина тела;

l 0 - первоначальная длина тела;

α - коэффициент линейного термического расширения;

Δ T - разница температур.

Коэффициент линейного термического расширения показывает, на какую часть первоначальной длины или ширины изменится размер тела, если его температура повысится на 1 градус.

Пример:

\(10\) км железнодорожного пути при увеличении температуры воздуха на \(9\) градусов (например, от \(-5\) до \(+4\)), удлиняются на 10 000 ⋅ 0,000012 ⋅ 9 = 1 , 08 метр. По этой причине между участками рельсов оставляют промежутки.

Термическое расширение надо учитывать и в трубопроводах, там используют компенсаторы - изогнутые трубы, которые при изменении температуры воздуха при необходимости могут сгибаться. На рисунке видно, что произойдёт, если не будет компенсатора.

Инженерам, проектирующим мосты, оборудование, здания, которые подвержены изменениям температуры, необходимо знать, какие материалы можно соединять, чтобы не образовались трещины.

Электрикам, которые протягивают линии электропередачи, необходимо знать, каким изменениям температуры будут подвержены провода. Если летом провода натянуты, то зимой они оборвутся.

При термическом расширении металлов используют автоматические выключатели тепловых приборов. Этот выключатель состоит из двух плотно соединённых пластин различных металлов (с различными термическими коэффициентами). Биметаллические пластины под воздействием температуры сгибаются или выпрямляются, замыкая или размыкая электрическую цепь.

С изменением линейных размеров изменяется также и объём тела. Изменение объёма тела описывается формулой, похожей на формулу линейного расширения, только вместо коэффициента линейного термического расширения используется коэффициент объёмного термического расширения .

Изменение объёма тела под воздействием температуры описывается формулой: V = V 0 (1 + β ⋅ Δ T) , где

V - объём тела;

V 0 - первоначальный объём тела;

β - коэффициент объёмного термического расширения;

Δ T - разница температур.

Коэффициент объёмного термического расширения показывает, на какую часть первоначального объёма изменится объём тела после повышения температуры на 1 градус.

Вещество

Коэффициент объёмного расширения β , K − 1

Ртуть...