Обмен энергии. К освобождению энергии в оргонизме приводить? К освобождению энергии в организме приводит диффузия

1. Общая характеристика обмена веществ в организме.

2. Обмен белков.

3. Обмен жирова.

4. Обмен углеводов.

ЦЕЛЬ: Представлять общую схему обмена веществ в организме, обмен белков, жиров, углеводов и проявления патологии этих видов обмена.

1. Поступив в организм, молекулы пищевых веществ участвуют во множестве различных реакций. Эти реакции, а также остальные химические проявления жизнедеятельности называются обменом веществ, или метаболизмом. Пищевые вещества используются в качестве сырья для син-теза новых клеток или окисляются, доставляя организму энергию.Часть этой энергии необходима для непрерывного построения новых тканевых компонентов, другая расходуется в процессе функционирования клеток: при сокращении мышц, передаче нервных импульсов, секреции кле-точных продуктов. Остальная энергия освобождается в виде тепла.

Процессы обмена веществ разделяют на анаболические и катаболические. Анаболизм (ассимиляция) - химические процессы, при которых простые вещества соединяются между собой с образованием более сложных,что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизм (диссимиляция) - расщепление сложных веществ, приводящее к освобождению энергии, при этом происходит разрушение протоплазмы и расходование ее веществ.

Сущность обмена веществ:1)поступление в организм из внешней среды различных питатель-ных веществ;2)усвоение и использование их в процессе жизнедеятельности как источников энергии и материала для построения тканей;3)выделение образующихся продуктов обмена во внешнюю среду.

Специфические функции обмена веществ:1) извлечение энергии из окружающей среды в форме химической энергии органических веществ;2) превращение экзогенных веществ в строительные блоки, т.е.предшественники макромолекулярных компонентов клетки;3) сборка белков, нуклеиновых кислот и других клеточных компонентов из этих блоков;4) синтез и разрушение биомолекул, необходимых для выполнения различных специфических функций данной клетки.

2. Обмен белков - совокупность пластических и энергетических процессов превращения белков в организме, включая обмен аминокислот и продуктов их распада. Белки - основа всех клеточ-ных структур, являются материальными носителями жизни. Биосинтез белков определяет рост, развитие и самообновление всех структурных элементов в организме и тем самым их функциональную надежность. Суточная потребность в белках (белковый оптимум) для взрослого человека составляет 100-120 г (при трате энергии 3000 ккал/сутки). В распоряжении организма должны быть все аминокислоты (20) в определенном соотношении и количестве, иначе белок не может быть синтезирован. Многие составляющие белок аминокислоты (валин, лейцин, изолейцин, лизин,метионин, треонин, фенилаланин, триптофан) не могут синтезироваться в организме и должны поступать с пищей (незаменимые аминокислоты). Другие аминокислоты могут быть синтезированы в организме и называются заменимыми (гистидин,гликокол,глицин,аланин, глутаминовая кислота, пролин, оксипролин, серии, тирозин, цистеин, аргинин,).Белки делят на биологически полноценные (с полным набором всех незаменимых аминокислот) и неполноценные (при отсутствии одной или нескольких незаменимых аминокислот).

Основные этапы обмена белков:1) ферментативное расщепление белков пищи до аминокислот и всасывание последних;2) превращение аминокислот;3) биосинтез белков;4) расщепление белков; 5) образование конечных продуктов распада аминокислот.

Всосавшись в кровеносные капилляры ворсинок слизистой оболочки тонкого кишечника, аминокислоты по воротной вене поступают в течень,где они немедленно используются, либо задерживаются в качестве небольшого резерва. Часть аминокислот остается в крови и попадает в другие клетки тела, где они включаются в состав новых белков. Белки тела непрерывно расщепляются и синтезируются заново (период обновления общего белка в организме - 80 дней). Если пища содержит больше аминокислот, чем необходимо для синтеза клеточных белков, ферменты печени отщепляют от них аминогруппы NH2, т.е. производят дезаминирование. Другие ферменты, соединяя отщепленные аминогруппы с СО2, образуют из них мочевину, которая переносится с кровью в почки и выделяется с мочой. Белки не откладываются в депо, поэтому белки, которые организм расходует после истощения запаса углеводов и жиров, - не резервные, а ферменты и структурные белки клеток.

Нарушения обмена белков в организме могут быть количественные и качественные. О количественных изменениях белкового обмена судят по азотистому балансу, т.е. по соотношению количества азота, поступившегo в организм с пищей и выделенного из него. В норме у взрослого человека при адекватном питании количество введенного в организм азота равно количеству, выведенного из организма (азотистое равновесие). Когда поступление азота превышает его выде-ление, говорят о положительном азотистом балансе, при этом происходит задержка азота в орга-низме. Наблюдается в период роста организма, во время беременности, при выздоровлении.. Когда количество выведенного из организма азота превышает количество поступившего, говорят об отрицательном азотистом балансе.Он отмечается при значительном снижении содержания белка в пище (белковом голодании).

3. Обмен жиров - совокупность процессов превращения липидов (жиров) в организме. Жиры являются энергетическим и пластическим материалом, входят в состав оболочки и цитоплазмы клеток. Часть жиров накапливается в виде запасов (10-30% массы тела). Основная масса жиров - нейтральные липиды (триглицериды олеиновой, пальмитиновой, стеариновой и других высших жирных кислот). Суточная потребность в жирах для взрослого человека 70-100 г. Биологическая ценность жиров определяется тем, что некоторые ненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая), необходимые для жизнедеятельности, являются незаменимыми (суточная потребность 10-12 г).и не могут образовываться в организме человека из других жирных кислот, поэтому они должны обязательно поступать с пищей (растительные и животные жиры).

Основные этапы жирового обмена:1) ферментативное расщепление жиров пищи в желудочно-кишечном тракте до глицерина и жирных кислот и всасывание последних в тонком кишечнике; 2) образование липопротеидов в слизистой оболочке кишечника и в печени и транспорт их кровью;3) гидролиз этих соединений на поверхности клеточных мембран ферментом липопротеидлипазой, всасывание жирных кислот и глицерина в клетки, где они используются для синтеза собственных липидов клеток органов и тканей. После синтеза липиды могут подвергаться окисле-нию, выделяя энергию, и превращаться в конечном итоге в углекислый газ и воду (100 г жиров дает при окислении 118 г воды). Жир может трансформироваться в гликоген, а затем подвергаться окислительным процессам по типу углеводного обмена. При избытке жир откладывается в виде запасов в подкожной клетчатке, большом сальнике, вокруг некоторых внутренних органов.

С пищей, богатой жирами, поступает некоторое количество липоидов (жироподобных веществ) - фосфатидов и стеринов. Фосфатиды необходимы организму для синтеза клеточных мембран, они входят в состав ядерного вещества, цитоплазмы клеток. Фосфатидами особенно богата нервная ткань. Главным представителем стеринов является холестерин. Он также входит в состав клеточных мембран, является предшественником гормонов коры надпочечников, половых желез, витамина D, желчных кислот. Холестерин повышает устойчивость эритроцитов к гемолизу, служит изолятором для нервных клеток, обеспечивая проведение нервных импульсов. Нормальное содержание общего холестерина в плазме крови 3,11-6,47 ммоль/л.

4. Обмен углеводов - совокупность процессов превращения углеводов в организме. Углеводы являются источниками энергии для непосредственного использования (глюкоза) или образуют депо энергии (гликоген), являются компонентами сложных соединений (нуклеопротеиды, глико-протеиды), используемых для построения клеточных структур.Суточная потребность 400-500 г.

Основные этапы углеводного обмена: 1) расщепление углеводов пищи в желудочно-кишеч-ном тракте и всасывание моносахаридов в тонком кишечнике;2) депонирование глюкозы в виде гликогена в печени и мышцах или непосредственное ее использование в энергетических целях; 3) расщепление гликогена в печени и поступление глюкозы в кровь по мере ее убыли (мобилизация гликогена);4) синтез глюкозы из промежуточных продуктов (пировиноградной и молочной кислот) и неуглеводных предшественников;5) превращение глюкозы в жирные кислоты; 6) окисление глюкозы с образованием углекислого газа и воды.

Углеводы всасываются в пищеварительном канале в виде глюкозы, фруктозы и галактозы. Они поступают по воротной вене в печень, где фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена. Процесс синтеза гликогена в печени из глюкозы называется гликогенезом (в печени содержится в виде гликогена 150-200 г углеводов). Часть глюкозы попадает в общий кровоток и разносится по всему организму, используясь как основной энергетический материал и как компонент сложных соединений (гликопротеиды, нуклеопротеиды).

Глюкоза является постоянной составной частью (биологической константой) крови. Содержание глюкозы в крови в норме 4,44-6,67 ммоль/л, при увеличении ее содержания (гипергликемии) до 8,34-10 ммоль/л она выводится с мочой в виде следов. При понижении уровня глюкозы в крови (гипогликемии) до 3,89 ммоль/л появляется чувство голода, до 3,22 ммоль/л - возникают судороги, бред и потеря сознания (кома). При окислении глюкозы в клетках для получения энергии она в конечном итоге превращается в углекислый газ и воду. Распад гликогена в печени до глюкозы - гликогенолиз. Биосинтез углеводов из продуктов их распада или продуктов распада жиров и белков - гликонеогенез. Расщепление углеводов при отсутствии кислорода с накоплением энергии в АТФ и образованием молочной и пировиноградной кислот - гликолиз.

Когда поступление глюкозы превышает потребность, печень превращает глюкозу в жир, который откладывается про запас в жировых депо и может быть использован в будущем как источ-ник энергии. Нарушение нормального обмена углеводов проявляется повышением содержания глюкозы в крови. Постоянная гипергликемия и глюкозурия, связанная с глубоким нарушением углеводного обмена наблюдается при сахарном диабете. В основе болезни лежит недостаточность инкреторной функции поджелудочной железы. Вследствие недостатка или отсутствия инсулина в организме нарушается способность тканей использовать глюкозу, и она выводится с мочой..

Энергия поступает в виде молекул белков, жиров и углеводов пищи, где происходит ее превращение. Вся энергия переходит в тепло, которое затем выделяется в окружающую среду. Тепло - конечный результат превращения энергии, а также мера энергии в организме. Освобождение энергии в нем происходит в результате окисления веществ в процессе диссимиляции. Освобождающаяся энергия переходит в доступную для организма форму - химическую энергию макроэргических связей молекулы АТФ. Везде, где совершается работа, происходит гидролиз связей молекулы АТФ. Энергетических затрат требуют процессы обновления и перестройки тканей; энергия расходуется при функционировании органов; при всех видах сокращения мышц, при мышечной работе; энергия затрачивается в процессах синтеза органических соединений, в том числе ферментов. Энергетические потребности тканей покрываются, главным образом, за счет расщепления молекулы глюкозы - гликолиза. Гликолиз - это многоступенчатый ферментативный процесс, в ходе которого суммарно выделяется 56 ккал. Однако энергия в процессе гликолиза выделяется не одномоментно, а в виде квантов, каждый из которых составляет примерно около 7.5 ккал, что и способствует ее заключению в макроэргические связи молекулы АТФ.

Определение величины прихода и расхода энергии

Для определения величины прихода энергии в организм необходимо знать, во-первых, химический состав пищи, т.е. сколько граммов белков, жиров и углеводов содержится в пищевых средствах и, во-вторых, теплоту сгорания веществ. Теплота сгорания - это количество тепла, которое выделяется при окислении 1 грамма вещества. При окислении 1 г жира в организме выделяется 9,3 ккал; 1 г углеводов - 4,1 ккал тепла и 1 г белка - 4,1 ккал. Если пища, например, содержит 400 г углеводов, то человек может получить 1600 ккал. Но углеводы должны пройти долгий путь превращений, прежде чем эта энергия станет достоянием клеток. Организм все время нуждается в энергии, и процессы диссимиляции идут беспрерывно. В нем постоянно окисляются собственные вещества, и выделяется энергия.

Расход энергии в организме определяется двумя путями. Во-первых, это так называемая прямая калориметрия, когда в специальных условиях определяют тепло, которое организм выделяет в окружающую среду. Во-вторых, это непрямая калориметрия. Расход энергии рассчитывается на основе вычленения газообмена: определяют количество кислорода, потребленное организмом за определенное время и количество углекислого газа, выделенное за это время. Поскольку выделение энергии происходит в результате окисления веществ до конечных продуктов - углекислот газа, воды и аммиака, то между количеством потребленного кислорода, выделенной энергией и углекислым газом существует определенная взаимосвязь. Зная показания газообмена и калорический коэффициент кислорода, можно рассчитать расход энергии организма. Калорический коэффициент кислорода - это количество тепла, выделяющееся при потреблении организмом 1 литра кислорода. Если окислению подвергаются углеводы, то при поглощении 1 л кислорода высвобождается 5,05 ккал энергии, если жиры и белки - соответственно 4,7 и 4,8 ккал. Каждому из этих веществ соответствует определенная величина дыхательного коэффициента, т.е. величина отношения объема углекислого газа, выделенного за данный промежуток времени, к объему кислорода, поглощенного организмом за этот интервал времени. При окислении углеводов дыхательный коэффициент равен 1, жиров - 0,7, белков - 0,8. Поскольку расщепление различных пищевых веществ в организме происходит одновременно, величина дыхательного коэффициента может варьироваться. Ее среднее значение у человека в норме находится в пределах 0,83-0,87. Зная величину дыхательного коэффициента, можно с помощью специальных таблиц определить количество освобождающейся энергии в калориях. По величине дыхательного коэффициента можно судить и об интенсивности протекания процессов обмена веществ в целом.

Основной обмен

В клинической практике для сравнения интенсивности обмена веществ и энергии у разных людей и выявления его отклонений от нормы определяют величину «основного» обмена, т.е. минимальное количество энергии, расходуемой только на поддержание функции нервной системы, деятельности сердца, дыхательной мускулатуры, почек и печени в состоянии полного покоя. Основной обмен определяют в особых условиях - в утренние часы натощак в положении лежа при полном физическом и психическом покое, не ранее 12-15 часов после последнего приема пищи, при температуре 18-20 °С. Основной обмен - важнейшая физиологическая константа организма. Величина основного обмена составляет примерно 1100-1700 ккал в сутки, а в расчете на 1 квадратный метр поверхности тела он составляет около 900 ккал в сутки. Нарушение любого из этих условий изменяет величину основного обмена обычно в сторону его увеличения. Индивидуальные физиологические различия величины основного обмена у разных людей определяются весом, возрастом, ростом и полом - это факторы, которые определяют величину основного обмена. Основной обмен характеризует исходный уровень потребления энергии, но его нельзя рассматривать как «минимальный», так как величина основного обмена при бодрствовании несколько выше, чем в условиях сна.

Принцип измерения основного обмена

На основании многочисленных определений основного обмена у людей составлены таблицы нормальных величин этого показателя в зависимости от возраста, пола и общей поверхности тела. В этих таблицах величины основного обмена приводятся в килокалориях (ккал) на 1 м 2 поверхности тела за 1 час. Большое влияние на основной обмен оказывают изменения гормональной системы организма, особенно щитовидной железы : при ее гиперфункции основной обмен может превышать нормальный уровень на 80%, при гипофункции основной обмен может быть ниже нормы на 40%. Выпадение функции передней доли гипофиза или коры надпочечников влечет за собой снижение основного обмена. Возбуждение симпатической нервной системы , усиленное образование или введение адреналина извне увеличивают основной обмен.

Расход энергии при работе

Увеличение расхода энергии при работе называют рабочей прибавкой. Расход энергии будет тем больше, чем интенсивнее и тяжелее производимая работа. Умственный труд не сопровождается повышением энергетических затрат. Так, например, решение в уме трудных математических задач приводит к увеличению расхода энергии всего на несколько процентов. Поэтому энергетические траты в сутки у лиц умственного труда меньше, чем у лиц, занимающихся физическим трудом.

Помогите пожалуйста режить 2 работы, очень срочно надо. Надеюсь на вашу помощь, так как в биологии я не очень сильна. А1. Клетки сходные по строению и

выполняемым функциям, образуют 1) Ткани; 2) органы; 3) системы органов; 4) единый организм. А2. В процессе фотосинтеза растения 1) Обеспечивают себя органическими веществами 2) окисляют сложные органические вещества до простых 3) Поглощают кислород и выделяют углекислый газ 4) Расходуют энергию органических веществ. А3. В клетке происходит синтез и расщепление органических веществ, поэтому её называют единицей 1) Строения 2) жизнедеятельности 3) роста 4) размножения. А4. Какие структуры клетки распределяются строго равномерно между дочерними клетками в процессе митоза? 1) Рибосомы; 2) митохондрии; 3) хлоропласты; 4) хромосомы. А5. Дезоксирибоза является составной частью 1) Аминокислот 2) белков 3) и РНК 4) ДНК. А6. Вирусы, проникая в клетку хозяина, 1) Питаются рибосомами; 2) поселяются в митохондриях; 3) Воспроизводят свой генетический материал; 4) Отравляют её вредными веществами, образующимися в ходе их обмена веществ. А7. Каково значение вегетативного размножения? 1) способствует быстрому увеличению численности особей вида; 2) ведет к появлению вегетативной изменчивости; 3) увеличивает численность особей с мутациями; 4) приводит к разнообразию особей в популяции. А8. Какие структуры клетки, запасающие питательные вещества, не относят к органоидам? 1) Вакуоли; 2) лейкопласты; 3) хромопласты; 4) включения. А9. Белок состоит из 300 аминокислот. Сколько нуклеотидов в гене, который служит матрицей для синтеза белка? 1) 300 2) 600 3) 900 4) 1500 А10. В состав вирусов, как и бактерий, входят 1) нуклеиновые кислоты и белки 2) глюкоза и жиры 3) крахмал и АТФ 4) вода и минеральные соли А11. В молекуле ДНК нуклеотиды с тимином составляют 10 % от общего числа нуклеотидов. Сколько нуклеотидов с цитозином в этой молекуле? 1) 10% 2) 40% 3)80% 4) 90% А12. Наибольшее количество энергииосвобождается при расщеплении одной связи в молекуле 1) Полисахарида 2) белка 3) глюкозы 4) АТФ 2 Вариант А1. Благодаря свойству молекул ДНК самоудваиваться 1) Происходят мутации 2) у особей возникают модификации 3) появляются новые комбинации генов 4) передаётся наследственная информация к дочерним клеткам. А2. Какое значение митохондрии в клетке 1) транспортируют и выводят конечные продукты биосинтеза 2) преобразуют энергию органических веществ в АТФ 3) осуществляют процесс фотосинтеза 4) синтезируют углеводы А3. Митоз в многоклеточном организме составляет основу 1) гаметогенеза 2) роста и развития 3) обмена веществ 4) процессов саморегуляции А4. Каковы цитологические основы полового размножения организма 1) способность ДНК к репликации 2) процесс формирования спор 3)накопление энергии молекулой АТФ 4) матричный синтез иРНК А5. При обратимой денатурации белка происходит 1) нарушение его первичной структуры 2) образование водородных связей 3) нарушение его третичной структуры 4) образование пептидных связей А6. В процессе биосинтеза белка молекулы иРНК переносят наследственную информацию 1) из цитоплазмы в ядро 2) одной клетки в другую 3)ядра к митохондриям 4) ядра к рибосомам. А7. У животных в процессе митоза в отличии от мейоза, образуются клетки 1) соматические 2) с половиной набором хромосом 3)половые 4) споровые. А8. В клетках растений, в отличие от клеток человека, животных, грибов, происходит А) выделение 2) питание 3) дыхание 4) фотосинтез А9. Фаза деления в которых, хроматиды расходятся к разным полюсам клетки 1) анафаза 2) метафаза 3) профаза 4) телофаза А10. Прикрепление нитей веретена деления к хромосомам происходит 1) Интерфаза; 2) профаза; 3) метафаза; 4) анафаза. А11. Окисление органических веществ с освобождением энергии в клетке происходит в процессе 1) Биосинтеза 2) дыхания 3) выделения 4) фотосинтеза. А12. Дочерние хроматиды в процессе мейоза расходятся к полюсам клетки в 1) Метафазе первого деления 2) Профазе второго деления 3) Анафазе второго деления 4) Телофазе первого деления

Это зачетная работа! Очень много вопросов... Помогите, прошу! Сюда кинула только половину. Ответьте, пожалуйста! Прокариоты, в отличии от эукариот, имеют

Выберите один ответ: a. митохондрии и пластиды b. плазматическую мембрану c. ядерное вещество без оболочки d. множество крупных лизосом В поступлении и передвижении веществ в клетке участвуют Выберите один или несколько ответов: a. эндоплазматическая сеть b. рибосомы c. жидкая часть цитоплазмы d. плазматическая мембрана e. центриоли клеточного центра Рибосомы представляют собой Выберите один ответ: a. два мембранных цилиндра b. округлые мембранные тельца c. комплекс микротрубочек d. две немембранные субъединицы Растительная клетка в отличии от животной имеет Выберите один ответ: a. митохондрии b. пластиды c. плазматическую мембрану d. аппарат Гольджи Крупные молекулы биополимеров поступают в клетку через мембрану Выберите один ответ: a. путем пиноцитоза b. за счет осмоса c. путем фагоцитоза d. путем диффузии При нарушении третичной и четвертичной структуры молекул белка в клетке перестают функционировать Выберите один ответ: a. ферменты b. углеводы c. АТФ d. липиды Текст вопроса

В чем проявляется взаимосвязь пластического и энергетического обмена

Выберите один ответ: a. энергетический обмен поставляет кислород для пластического b. пластический обмен поставляет органические вещества для энергетического c. пластический обмен поставляет молекулы АТФ для энергетического d. пластический обмен поставляет минеральные вещества для энергетического

Сколько молекул АТФ запасается в процессе гликолиза?

Выберите один ответ: a. 38 b. 36 c. 4 d. 2

В реакциях темновой фазы фотосинтеза участвуют

Выберите один ответ: a. молекулярный кислород, хлорофилл и ДНК b. углекислый газ, АТФ и НАДФН2 c. вода, водород и тРНК d. оксид углерода, атомарный кислород и НАДФ+

Сходство хемосинтеза и фотосинтеза состоит в том, что в обоих процессах

Выберите один ответ: a. на образование органических веществ используется солнечная энергия b. на образование органических веществ используется энергия, освобождаемая при окислении неорганических веществ c. органические вещества образуются из неорганических d. образуются одни и те же продукты обмена

Информация о последовательности расположения аминокислот в молекуле белка переписывается в ядре с молекулы ДНК на молекулу

Выберите один ответ: a. рРНК b. иРНК c. АТФ d. тРНК Какая последовательность правильно отражает путь реализации генетической информации Выберите один ответ: a. признак --> белок --> иРНК --> ген --> ДНК b. ген --> ДНК --> признак --> белок c. ген --> иРНК --> белок --> признак d. иРНК --> ген --> белок --> признак

Всю совокупность химических реакций в клетке называют

Выберите один ответ: a. брожением b. метаболизмом c. хемосинтезом d. фотосинтезом

Биологический смысл гетеротрофного питания заключается в

Выберите один ответ: a. потреблении неорганических соединений b. синтезе АДФ и АТФ c. получении строительных материалов и энергии для клеток d. синтезе органических соединений из неорганических

Все живые организмы в процессе жизнедеятельности используют энергию, которая запасается в органических веществах, созданных из неорганических

Выберите один ответ: a. растениями b. животными c. грибами d. вирусами

В процессе пластического обмена

Выберите один ответ: a. более сложные углеводы синтезируются из менее сложных b. жиры превращаются в глицерин и жирные кислоты c. белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ d. происходит освобождение энергии и синтез АТФ

Принцип комплементарности лежит в основе взаимодействия

Выберите один ответ: a. нуклеотидов и образования двуцепочечной молекулы ДНК b. аминокислот и образования первичной структуры белка c. глюкозы и образования молекулы полисахарида клетчатки d. глицерина и жирных кислот и образования молекулы жира

Значение энергетического обмена в клеточном метаболизме состоит в том, что он обеспечивает реакции синтеза

Выберите один ответ: a. нуклеиновыми кислотами b. витаминами c. ферментами d. молекулами АТФ

Ферментативное расщепление глюкозы без участия кислорода - это

Выберите один ответ: a. пластический обмен b. гликолиз c. подготовительный этап обмена d. биологическое окисление

Расщепление липидов до глицерина и жирных кислот происходит в

Выберите один ответ: a. кислородную стадию энергетического обмена b. процессе гликолиза c. ходе пластического обмена d. подготовительную стадию энергетического обмена

Из предложенных ответов выберите одно из положений клеточной теории:

А) организмы всех царств живой природы состоят из клеток
Б) оболочка грибной клетки состоит из хитина, как и наружный скелет членистоногих
В) клетки животных организмов не содержат пластиды
Г) спора бактерий представляет собой одну специализированную клетку
Вода в клетке выполняет функцию: А) транспортную, растворителя
Б) энергетическую В) каталитическую Г) информационную
РНК представляет собой:
А) полинуклеотидную цепь в форме двойной спирали, цепи которой соединены водородными связями Б) нуклеотид, содержащий две богатых энергией связи
В) полинуклеотидную нить в форме одноцепочечной спирали
Г) полинуклеотидную цепь, состоящую из различных аминокислот
Синтез молекул АТФ происходит в:
А) рибосомах Б) митохондриях В) аппарате Гольджи Г) ЭПС
Клетки прокариот отличаются от клеток эукариот:
А) более крупными размерами Б) отсутствием ядра
В) наличием оболочки Г) наличием нуклеиновых кислот
Митохондрии считают силовыми станциями клетки, так как:
А) в них расщепляются органические вещества с освобождением энергии
Б) в них откладываются в запас питательные вещества
В) в них образуются органические вещества Г) они преобразуют энергию света
Значение обмена веществ в клетке состоит в:
А) обеспечение клетки строительным материалом и энергией
Б) осуществлении передачи наследственной информации от материнского организма к дочернему
В) равномерном распределении хромосом между дочерними клетками
Г) обеспечении взаимосвязей клеток в организме
Роль и-РНК в синтезе белка состоит в:
А) обеспечении хранения наследственной информации Б) обеспечении клетки энергией
В) обеспечении передачи генетической информации из ядра в цитоплазму
Восстановление диплоидного набора хромосом в зиготе – первой клетке нового организма – происходит в результате:
А) мейоза Б) митоза В) оплодотворения Г) обмена веществ
«Гены, расположенные в одной хромосоме, наследуются совместно» - это формулировка:
А) правила доминирования Г. Менделя Б) закона сцепленного наследования Т. Моргана
В) закона расщепления Г. Менделя Г) закона независимого наследования признаков Г. Менделя
Генетический код представляет собой:
А) отрезок молекулы ДНК, содержащий информацию о первичной структуре одного белка
Б) последовательноcть аминокислотных остатков в молекуле белка
В) последовательность нуклеотидов в молекуле ДНК, определяющую первичную структуру всех молекул белка
Г) зашифрованную в т-РНК информацию о первичной структуре белка
Совокупность генов популяции, вида или иной систематической группы называют:
А) генотипом Б) фенотипом В) генетическим кодом Г) генофондом
Изменчивость, которая возникает под влиянием факторов внешней среды и не затрагивает хромосомы и гены, называют: А) наследственной Б) комбинативной
В) модификационной Г) мутационной
Образование новых видов в природе происходит в результате:
А) стремления особей к самоусовершенствованию
Б) преимущественного сохранения в результате борьбы за существование и естественного отбора особей с полезными наследственными изменениями:
В) отбора и сохранения человеком особей с полезными наследственными изменениями
Г) выживания особей с разнообразными наследственными изменениями
Процесс сохранения из поколения в поколение особей с полезными для человека наследственными изменениями называется: А) естественный отбор
Б) наследственная изменчивость В) борьба за существование Г) искусственный отбор
Определите среди названных эволюционных изменений ароморфоз:
А) формирование конечностей копательного типа у крота
Б) появление покровительственной окраски у гусеницы
В) появление легочного дыхания у земноводных Г) утрата конечностей у китов
Из перечисленных факторов эволюции человека к биологическим относится:
А) естественный отбор Б) речь В) общественный образ жизни Г) труд
Выпишите буквы в той последовательности, которая отражает этапы эволюции человека: А) кроманьонцы Б) питекантропы В) неандертальцы Г) австралопитеки
Все компоненты неживой природы (свет, температура, влажность, химический и физический состав среды), воздействующие на организмы, популяции, сообщества, называют факторами:
А) антропогенными Б) абиотическими В) ограничивающими Г) биотическими
Животных, грибы относят к группе гетеротрофов, так как:
А) сами создают органические вещества из неорганических Б) используют энергию солнечного света В) питаются готовыми органическими веществами Г) питаются минеральными веществами
Биогеоценоз – это:
А) искусственное сообщество, созданное в результате хозяйственной деятельности человека
Б) комплекс взаимосвязанных видов, обитающих на определенной территории с однородными природными условиями
В) совокупность всех живых организмов планеты
Г) геологическая оболочка, населенная живыми организмами
Форму существования вида, обеспечивающую его приспособленность к жизни в определенных условиях, представляет:
А) особь Б) стадо В) колония Г) популяция

1. Крахмал

накапливается в

А
– хлоропластах Б – ядре В – лейкопластах Г – хромопластах
2. Цитоплазма не выполняет
функцию

А
– перемещения веществ Б – взаимодействия всех органоидов

В
– питания Г – защитную
3. Запасные
питательные вещества и продукты распада накапливаются в клетках растений в

А
– лизосомах Б – хлоропластах В – вакуолях Г – ядре
4. Белки,
жиры и углеводы окисляются с освобождением энергии в

А
– митохондриях Б – лейкопластах

В
– эндоплазматической сети Г – комплексе Гольджи
5. «Сборка»
рибосом происходит в

А
– эндоплазматической сети Б - комплексе Гольджи

В
– цитоплазме Г – ядрышках
6. На поверхности гладкой эндоплазматической сети синтезируются молекулы А – минеральных солей Б – нуклеотидов В – углеводов, липидов Г – белков
7. На поверхности шероховатой эндоплазматической сети размещаются А – лизосомы Б – микротрубочки В – митохондрии Г – рибосомы
8. Эукариоты – это организмы, имеющие А – пластиды Б – жгутики В – клеточную оболочку Г – оформленное ядро
9. Клетка – основная единица строения всех организмов, так как А – в основе размножения организмов лежит деление клетки Б – в клетке протекают реакции обмена веществ В – деление клетки лежит в основе роста организма Г – все организмы состоят из клеток
10. В образовании веретена деления участвует А – цитоплазма Б – клеточный центр В – эндоплазматическая сеть Г - вакуоль

Свободная энергия для организма может поступать лишь с пищей. Она аккумулирована в сложных химических связях белков, жиров и углеводов. Для того, чтобы освободить эту энергию, питательные вещества вначале подвергаются гидролизу, а потом - окислению в анаэробных или аэробных условиях.

В процессе гидролиза, который осуществляется в желудочно-кишечном тракте, высво­бождается незначительная часть свободной энергии (менее 0,5%). Она не может быть ис­пользована для нужд биоэнергетики, т. к. не аккумулируется макроэргами типа АТФ. Она превращается лишь в тепловую энергию (первичную теплоту), которая используется орга­низмом для поддерживания температурного гомеостаза,

2-й этап высвобождения энергии - это процесс анаэробного окисления. В частности, таким способом высвобождается около 5% всей свободной энергии из глюкозы при окисле­нии до молочной кислоты. Эта энергия, однако, аккумулируется макроэргом АТФ и ис­пользуется на совершение полезной работы, например, для мышечного сокращения, для работы натрий-калиевого насоса, но, в конечном итоге, она тоже превращается в теплоту, которая называется вторичной теплотой.

3-й этап- основной этап высвобождения энергии - до 94,5% всей энергии, которая способна высвободиться в условиях организма. Осуществляется этот процесс в цикле Кребса: в нем происходит окисление пировиноградной кислоты (продукт окисления глюкозы) и ацетилкоэнзима А (продукт окисления аминокислот и жирных кислот). В процессе аэроб­ного окисления свободная энергия высвобождается в результате отрыва водорода и перено­са его электронов и протонов по цепи дыхательных ферментов на кислород. При этом осво­бождение энергии идет не одномоментно, а постепенно, поэтому большую часть этой сво­бодной энергии (примерно 52-55%) удается аккумулировать в энергию макроэрга (АТФ). Остальная часть в результате «несовершенства» биологического окисления теряется в виде первичной теплоты. После использования свободной энергии, запасенной в АТФ, для со­вершения полезной работы она превращается во вторичную теплоту.



Таким образом, вся свободная энергия, которая высвобождается при окислении пита­тельных веществ, в конечном итоге, превращается в тепловую энергию. Поэтому замер количества тепловой энергии, которую выделяет организм, является методом определения энерготрат организма,

В результате окисления глюкоза, аминокислоты и жирные кислоты в организме превраща­ются в углекислый газ и воду. Если в специальном сосуде (калориметрическая бомба Бертло) сжигать белки, углеводы и жиры в атмосфере кислорода до этих же конечных продуктов, то


высвобождается следующее количество энергии: при сжигании 1 г белка - 5,4 ккал, при сжи­гании 1г жира - 9,3 ккал, при сжигании 1г углеводов - 4,1 ккал. Эти величины получили название «калорических эквивалентов». В условиях организма калорические эквиваленты 1 г углеводов и 1 г жира такие же, как и в калориметрической бомбе, так как сжигание проис­ходит до тех же конечных продуктов, т. е. до СО 2 и Н 2 О.

Согласно закону Гесса, термодинамический эффект реакции, приведшей к образованию од­них и тех же продуктов, одинаков и не зависит от промежуточных стадий превращений. Для белка в условиях организма калорический эквивалент ниже, чем в бомбе - 4,1, а не 5,4 ккал/г, так как белок в организме окисляется неполностью, часть его покидает организм в виде мочеви­ны, аммиака, аммония.

Итак, в условиях организма при окислении 1г белка высвобождается 4,1 ккал, при этом на окисление расходуется 0,966 л кислорода и выделяется 0,777л СОг:

1г белка + 0,966л О 2 = 4,1 ккал + 0,777л СО 2

Из этой реакции вытекает, что если в организме окисляется белок и на это расходуется 1л кислорода, то должно высвобождаться 4,6 ккал. Эта величина получила название кало­рический коэффициент кислорода, или калорический эквивалент кислорода (КЭК). Бели рассчитать отношение объема углекислого газа к объему кислорода, то оно равно 0,777/ 0,966 = 0,8. Эта величина называется дыхательным коэффициентом (ДК).

Если в условиях организма окисляется 1 г углеводов, то реакцию можно записать следу­ющим образом:

1г углеводов + 0,833л Ог = 4,1ккал + 0,833л СО 2

Таким образом, если на окисление идут только углеводы, то при потреблении 1 л кисло­рода высвобождается 5,05 ккал, а дыхательный коэффициент равен 0,833/0,833 =1.

При окислении 1г жира:

1 г жира + 2,019л О 2 - 9,3ккал + 1,413л СОг

Таким образом, если в организме окисляются только жиры и использован 1л кислорода, то при этом выделится 4,69 ккал. Величина ДК при окислении жиров составляет 1,413/ 2,019=0,7.

Когда в организме одновременно окисляются жиры, белки, углеводы, то ДК может ко­лебаться от 0,7 (окисление только одних жиров) до 1,0 (окисление одних углеводов), а в среднем-0,85. При ДК, равном 0,85, при сжигании 1л кислорода высвобождается 4,862ккал.

Приведенные расчеты показывают, что знание объема потребленного кислорода и вы­дохнутого углекислого газа (например, за 1 минуту) позволяет определить на основе вы­числения ДК - что окисляется (белки? жиры? углеводы?) и тем самым определить калори­ческий эквивалент кислорода, а на его основе рассчитать количество освобождаемой энер­гии. Например, человек за 1 минуту поглотил 0,250л кислорода, выдохнул 0,212л углекис­лого газа. Следовательно, ДК = 0,212/0,250 = 0,85. Калорический эквивалент кислорода при ДК, равном 0,85, согласно расчетам и экспериментальным данным, составляет 4,862 ккал/л кислорода. Тогда при потреблении 0,250 л кислорода выделится 0,250 х 4,862 = 1,22ккал. Так как в нашем примере замеры были сделаны в рассчете на 1 минуту, то ско­рость высвобождения энергии в данном случае составляет 1,22 ккал/мин. Вели допустить, что на протяжении часа (суток) потребление кислорода будет таким же, а величина ДК - на уровне 0,85, то этот расчет можно экстраполировать на час (60 х 1,22 ккал = 73,2 ккал/час) или на сутки (24 х 60 х 1,22 = 1756,8 ккал/сутки).

МЕТОДЫ ОЦЕНКИ ЭНЕРГОТРАТ

Существуют два варианта методов: прямой и косвенной биокалориметрии. Второй ме­тод, в свою очередь, подразделяется на два подтипа: метод полного и неполного газового анализа.

Прямая биокалориметрия заключается в измерении потока тепловой энергии, которую организм выделяет в окружающую среду (например, за 1 час или за сутки). С этой целью


используются калориметры - специальные камеры (кабины), в которые помещают челове­ка или животное. Стенки калориметра омывает вода. О количестве выделенной энергии судят по величине нагрева этой воды.

Метод точный, но неудобен в эксплуатации. Выполнив свою роль как метод-родона­чальник, он позволил использовать метод косвенной биокалориметрии.

Косвенная биокалориметрня основана на принципах, изложенных выше, - на основе данных о количестве потребленного кислорода и выделенного углекислого газа, расчета величины ДК и соответствующего калорического эквивалента кислорода. При наличии све­дений об объемах поглощенного кислорода и выдохнутого углекислого газа метод косвен­ной биокалориметрии называется «полный газовый анализ». Для его выполнения необходи­ма аппаратура, позволяющая определить объем кислорода и объем углекислого газа. В класси­ческой биоэнергетике с этой целью использовался мешок Дугласа, газовые часы (для определе­ния объема выдохнутого за определенный период времени воздуха), а также газоанализатор Холдена, в котором существуют поглотители для углекислого газа (КОН) и кислорода (пирога-лол), что позволяет оценить процентное содержание О 2 и СО 2 в исследуемой пробе воздуха. На основе расчетов оценивается объем поглощенного кислорода и выдохнутого углекислого газа.

Например, испытуемый за 1 минуту выдохнул в мешок Дугласа 8 л воздуха. В атмо­сферном воздухе содержание кислорода равно 20,9%, в выдыхаемом - 15,9%. Следова­тельно, испытуемый поглотил за 1 минуту 8 х (20,9%-15,9%)/100 * 0,4 л кислорода. Про­цент углекислого газа соответственно составил 0,3% и 4,73%. Тогда объем выдохнутого углекислого газа составил 8 х (4,73 - 0,03) /100 = 0,376 л СО 2 .

Исходя из этих данных получаем: ДК « 0,376 / 0,400 = 0,94.

В этом случае калорический эквивалент кислорода (КЭК) равен 4,9 ккал/л. Следова­тельно, за 1 минуту испытуемый выделил (или затратил) 0,4л (л х 4,9 ккал = 1,96 ккал.

В последние годы техника анализа содержания кислорода и углекислого газа претерпе­ла изменения, появились автоматические газоанализаторы. Так, например, прибор «Спиро-лит» позволяет одновременно автоматически определить объем потребленного кислорода и объем выдохнутого углекислого газа.

Однако в большинстве случаев имеющиеся в медицине приборы не позволяли оценить объем выдыхаемого углекислого газа, в то время как объем поглощенного кислорода с по­мощью этих приборов определяется. Например, прибор «Метатест». Поэтому в клиничес­кой и физиологической практике широко используется второй вариант метода косвенной биокалориметрии - неполный газовый анализ. В этом случае определяется лишь объем поглощенного кислорода. Поэтому расчет ДК невозможен. Условно принимают, что в ор­ганизме окисляются углеводы, белки, жиры. Поэтому ДК = 0,85, для которого калоричес­кий эквивалент кислорода равен 4,862 ккал/л.

Обмен веществ и энергии - основа процессов жизнедеятельно­сти организма. В организ­ме человека, его органах, тканях, клетках непрерывно образуются, разрушаются, обновляются клеточные структуры и различные сложные химические соединения. Для построения новых клеток организма, их непрерывного обновления, для работы таких органов, как мозг, сердце, желу­дочно-кишечный тракт, дыхательный аппарат, почки и т. д., а так­же для совершения человеком работы нужна энергия. Эту энер­гию человек получает в процессе обмена веществ. Источником энергии, необходимой для жизни, служат пита­тельные вещества, поступающие в организм.

9.7.2. Анаболизм и катаболизм.

В процессе обмена веществ проис­ходят два противоположных и взаимосвязанных процесса: анабо­лизм и катаболизм.

Анаболизм является основой для построения структур иду­щих на восстановление отмирающих клеток, формирования новых тканей в процессе роста организма, для синтеза клеточных со­единений, необходимых для жизнедеятельности клеток. Анаболизм требует затраты энергии.

Энергия для анаболических процессов поставляется реакция­ми катаболизма.

Конечные продукты катаболизма - вода, углекислый газ, аммиак, мочевина, мочевая кислота удаляются из организма.

Соотношение процессов анаболизма и катаболизма определяет три различных состояния: динамическое равновесие, рост, частичное разрушение структур тела. При динамическом рав­ новесии , когда процессы анаболизма и катаболизма уравновеше­ны, общее количество ткани не изменяется. Превалирование ана­ болических процессов приводит к накоплению ткани, происходит рост организма; преобладание катаболизма над анаболизмом при­водит к разрушению ткани, уменьшению массы организма - его истощению. У взрослых обычно при нормальном состоянии орга­низма анаболические и катаболические процессы находятся в состоянии равновесия.

9.7.3. Основные этапы обмена веществ в организме.

Химические превращения пищевых веществ начинаются в пищеварительном тракте. Здесь сложные вещества пищи расщепляются до более простых, способных всосаться в кровь или лимфу. Превращения веществ, происходящие внутри клеток, составляют существо вну­ триклеточного или промежуточного обмена. Решающая роль во внутриклеточном обмене принадлежит многочисленным фермен­там клетки. Ферменты представляют собой белки, которые дейст­вуют как органические катализаторы; сами ферменты в реакциях не участвуют, однако благодаря их деятельности с веществами клетки происходят сложные превращения, разрываются внутри­молекулярные химические связи в них, что приводит к высвобож­дению энергии. Особое значение здесь приобретают реакции окисления и вос­становления. При участии специальных ферментов осуществляют­ся и другие типы химических реакций в клетке: таковы реакции переноса остатка фосфорной кислоты (фосфорилирование), ами­ногруппы NH 2 (переаминирование), группы метила СН 3 (транс­метилирование) и др. Освобождающаяся при этих реакциях энер­гия используется для построения новых веществ в клетке, на под­держание жизнедеятельности организма. Конечные, продукты внутриклеточного обмена частично идут на построение новых веществ клетки, а не используемые клеткой вещества удаляются из организма в результате деятельности ор­ганов выделения. Энергетический метаболизм клеток (образование и превраще­ние энергии) происходит главным образом в митохондриях. В жидкой части клетки - цитоплазме растворены вещества, слу­жащие источником обменных процессов. Основным аккумулятором и переносчиком энергии, используемой при синтетических процес­сах, является аденозинтрифосфорная кислота (АТФ). Большая часть энергии, высвобождаемой при катаболических процессах, образуется в митохондриях при участии кислорода - это аэробные реакции . Кроме аэробных реакций в организме про­исходят анаэробные реакции , не требующие кислорода, они чаще происходят в цитоплазме клеток. Анаэробные процессы наиболее характерны для мышечной ткани.