К конденсационным методам получения дисперсных систем относятся. Получение дисперсных систем

Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.

Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость.

Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе – создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физические методы конденсации:

1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно – активными веществами; химическую пептизацию.

С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

Методы очистки:

1. Диализ – очистка золей от примесей с помощью полупроницаемых мембран, омываемых чистым растворителем.

2. Электродиализ – диализ, ускоренный за счет электрического поля.

3. Ультрафильтрация – очистка путем продавливания дисперсионной среды вместе с низкомалекулярными примесями через полупроницаемую мембрану(ультрафильтр).

Малекулярно-кинетические и оптические свойства дисперсных систем: броуновское движение, осмотическое давление, диффузия, седиментационное равновесие, седиментационный анализ, оптические свойства дисперсных систем.

Все молеклярно-кинетические свойства обусловлены самопроизвольны движением молекул и проявляются в броуновском движении, диффузии, осмосе, седиментауионном равновесии.

Броуновским называют непрерывное, хоатичное, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкости или газах, за счет воздействия молекул дисперсионной среды. Теория броуновского движения исходит из представления о взаимодействии случайной силы, которая характеризует удары молекул, силы, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде с определенной скоростью.

Кроме поступательного движения возможно и вращательное, характерно для двухмерных частиц неправильной формы (нитей, волокон, хлопьев). Броуновское движение наиболее ярко выражено у высокодисперсных систем, а его интенсивность зависит от дисперсности.

Диффузия – самопроизвольное распространение вещества из области с большей концентрацией в область меньшей концентрацией. Различают следующие виды:

1.)молекулярную

3)коллоидные частицы.

Скорость диффузии в газах наибольшая, а в твердых телах – наименьшая.

Осмотическое давление – это такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. ОД возникает при движении чистогорастворителя в сторону раствора или от более разбавленного раствора в сторону более концентрированного, а следовательно связано с раностью концентрацией растворенного вещества и растворителя. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы оно в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор).

Седиментация – это расслоение дисперсных систем под действием силы тяжести с отделением дисперсной фазы в виде осадка. Способность дисперсных систем к седиментации является показателем их седиментационной устойчивости. Процессы расслоения применяют тогда, когда требуется выделить тот или иной компонент из какого-то компонента из какого-то природного или искусственно приготовленного продукта, представляющего собой гетерогенную жидкостную систему. В одних случаях из системы извлекают ценный компонент, в других удаляют нежелательные примеси. В общественном питании процессы расслоения дисперсных систем необходимы, когда требуется получить прозрачные напитки, осветилить бульон, освободить его от частиц мяса.

Поведение луча света, встречающего на пути частицы дисперсной фазы, зависит о соотношения длины волны света и размеров частиц. Если размеры частиц больше длины световой волны, то свет отражается от поверхности частиц под определенным углом. Это явление наблюдается в суспензиях. Если размеры частиц меньше длины световой волны, то свет рассеивается.

Методы получения коллоидных растворов также можно разделить на две группы: методы конденсации и диспергирования (в отдельную группу выделяется метод пептизации , который будет рассмотрен позднее). Еще одним необходимым для получения золей условием, помимо доведения размеров частиц до коллоидных, является наличие в системе стабилизаторов - веществ, препятствующих процессу самопроизвольного укрупнения коллоидных частиц.

Рис. Классификация способов получения дисперсных систем (в скобках указан вид систем)

Дисперсионные методы

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов. Процесс диспергирования осуществляется различными методами: механическим размалыванием вещества в т.н. коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука .

Диспергирование может быть самопроизвольное и несамопроизвольное. Самопроизвольное диспергирование характерно для лиофильных систем и связано с ростом беспорядка системы (когда из одного большого куска образуется много мелких частиц). При диспергировании при постоянной температуре рост энтропии должен превышать изменение энтальпии.

ΔН > TΔS; ΔG > 0.

Процесс диспергирования в этом случае является типично несамопроизвольным и осуществляется за счет внешней энергии.

Диспергирование характеризуется степенью диспергирования. Она определяется отношением размеров исходного продукта и частиц дисперсной фазы полученной системы. Степень диспергирования можно выразить следующим образом:


α 1 = d н /d к; α 2 = B н /B к; α 3 = V н /V к,

где d н; d к; B н; B к; V н; V к — соответственно диаметр, площадь пoвepxнocти, объем частиц до и после диспергирования.

Таким образом, степень диспергирования может быть выражена в единицах размера (α 1), площади поверхности (α 2) или объема (α 3) частиц дисперсной фазы, т.е. может быть линейной, поверхностной или объемной.

Работа W, необходимая для диспергирования твердого тела или жидкости, затрачивается на деформирование тела W д и на образование новой поверхности раздела фаз W а, которая измеряется работой адгезии. Деформирование является необходимой предпосылкой разрушения тела. Согласно П.А. Ребиндеру работа диспергирования определяется по формуле

W = W a + W д = σ*ΔB + кV,

где σ* — величина, пропорциональная или равная поверхностному натяжению на границе раздела между дисперсной фазой и дисперсионной средой; ΔB — увеличение поверхности раздела фаз в результате диспергирования; V — объем исходного тела до диспергирования; к — коэффициент, эквивалентный работе деформирования единицы объема тела.

Методы конденсации

К конденсационным методам получения дисперсных систем относятся конденсация, десублимация и кристаллизация . Они основаны на образовании новой фазы в условиях пересыщенного состояния вещества в газовой или жидкой среде. При этом система из гомогенной переходит в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация — для жидкой среды.

Необходимым условием конденсации и кристаллизации является пересыщение и неравномерное распределение вещества в дисперсионной среде (флуктуация концентрации), а также образование центров конденсации или зародышей.

Степень пересыщения β для раствора и пара можно выразить следующим образом:

β ж = с/с s , β П = р/р s ,

где р, с — давление пересыщенного пара и концентрация вещества в пересыщенном растворе; р s — равновесное давление насыщенного пара над плоской поверхностью; с s — равновесная концентрация, соответствующая образованию новой фазы.

Для осуществления кристаллизации охлаждают раствор или газовую смесь.

В основе конденсационных методов получение дисперсных систем лежат процессы кристаллизации, десублимации и конденсации, которые вызваны уменьшением энергии Гиббса (ΔG < 0) и протекают самопроизвольно.

При зарождении и образовании частиц из пересыщенного раствора или газовой среды изменяется химический потенциал µ, возникает поверхность раздела фаз, которая становится носителем избыточной свободной поверхностной энергии.

Работа, затрачиваемая на образование частиц, определяется поверхностным натяжением σ и равна:

W 1 = 4πr 2 σ,

где 4πr 2 — поверхность сферических частиц радиусом r.

Химический потенциал изменяется следующим образом:

Δμ = μ i // - μ i / < 0; μ i // > μ i / ,

где μ i / и μ i // — химические потенциалы гомо и гетерогенных систем (при переходе от мелких капель к крупным).

Изменение химического потенциала характеризует перенос определенного числа молей вещества из одной фазы в другую; это число n молей равно объему частицы 4πr 3 /3, деленному на мольный объем Vм:

Работа образования новой поверхности в процессе конденсации W к равна:

где W 1 и W 2 — соответственно работа, затрачиваемая на образование поверхности частиц, и работа на перенос вещества из гомогенной среды в гетерогенную.

Образование дисперсных систем может происходить в результате физической и химической конденсации, а также при замене растворителя.

Физическая конденсация осуществляется при понижении температуры газовой среды, содержащей пары различных веществ. При выполнении необходимых условий образуются частицы или капли дисперсной фазы. Подобный процесс имеет место не только в объеме газа, но и на охлажденной твердой поверхности, которую помещают в более теплую газовую среду.

Конденсация определяется разностью химических потенциалов (μ i // - μ i /) < 0, которая изменяется в результате замены растворителя. В отличие от обычной физической конденсации при замене растворителя состав и свойства дисперсионной среды не остаются постоянными. Если спиртовые или ацетоновые растворы серы, фосфора, канифоли и некоторых других органических веществ влить в воду, то раствор становится пересыщенным, происходит конденсация и образуются частицы дисперсной фазы. Метод замены растворителя является одним из немногих, при помощи которых можно получить золи.

При химической конденсации происходит образование вещества с одновременным его пересыщением и конденсацией.

Известны два способа получения дисперсных систем. В одном из них тонко измельчают (диспергируют) твердые и жидкие вещества в соответствующей дисперсионной среде, в другом вызывают образование частиц дисперсионной фазы из отдельных молекул или ионов.

Методы получения дисперсных систем измельчением более крупных частиц называют диспергационными. Методы, основанные на образовании частиц в результате кристаллизации или конденсации, называют конденсационными.

Диспергационные методы

Эта группа методов объединяет, прежде всего, механические способы, в которых преодоление межмолекулярных сил и накопление свободной поверхностной энергии в процессе диспергирования происходит за счет внешней механической работы над системой. В результате твердые тела раздавливаются, истираются, дробятся или расщепляются, причем характерно это не только для лабораторных или промышленных условий, но и для процессов диспергирования, происходящих в природе (результат дробления и истирания твердых пород пол действием сил прибоя, приливно-отливные явления, процессы выветривания и выщелачивания и т.д.).

В лабораторных и промышленных условиях рассматриваемые процессы проводят в дробилках, жерновах и мельницах различной конструкции. Наиболее распространены шаровые мельницы. Это полые вращающиеся цилиндры, в которые загружают измельчаемый материал и стальные или керамические шары. При вращении цилиндра шары перекатываются, истирая измельчаемый материал. Измельчение может происходить и в результате ударов шаров. В шаровых мельницах получают системы, размеры частиц которых находятся в довольно широких пределах: от 2 - 3 до 50 - 70 мкм. Полый цилиндр с шарами можно приводить в круговое колебательное движение, что способствует интенсивному дроблению загруженного материала под действием сложного движения измельчающих тел. Такое устройство называется вибрационной мельницей.

Более тонкого диспергирования добиваются в коллоидных мельницах различных конструкций, принцип действия которых основан на развитии разрывающих усилий в суспензии или эмульсии под действием центробежной силы в узком зазоре между вращающимся с большой скоростью ротором и неподвижной частью устройства - статором. Взвешенные крупные частицы испытывают при этом значительное разрывающее усилие и таким образом диспергируются. Тип коллоидной мельницы, широко распространенный в настоящее время, изображен на рис. 1 (смотри приложение). Эта мельница состоит из ротора, представляющего конический диск 1, сидящий на валу 2, и статора 3. Ротор приводится во вращение с помощью специального расположенного вертикально мотора, совершающего обычно около 9000 об/мин. Рабочие поверхности ротора и статора 4 пришлифованы друг к другу и толщина щели между ними составляет около 0,05 мм. Грубая суспензия полается в мельницу по трубе 5 под вращающийся диск центробежной силой, развивающейся в результате вращений ротора, проталкивается через щель и затем удаляется из мельницы через трубу 6. При прохождении жидкости в виде тонкой пленки через щель взвешенные в жидкости частицы испытывают значительные сдвиговые усилия и измельчаются. Степень дисперсности полученной системы зависит от толщины щели и скорости вращения ротора: чем меньше зазор и больше скорость, тем больше сдвиговое усилие и следовательно, выше будет дисперсность.

Высокой дисперсности можно достичь ультразвуковым диспергированием. Диспергируещее действие ультразвука связано с кавитацией - образованием и захлопыванием полостей в жидкости. Захлопывание полостей сопровождается появлением кавитационных ударных волн, которые и разрушают материал. Экспериментально установлено, что дисперсность находится в прямой зависимости от частоты ультразвуковых колебаний. Особенно эффективно ультразвуковое диспергирование, если материал предварительно подвергнут тонкому измельчению. Эмульсии, полученные ультразвуковым методом, отличаются однородностью размеров частиц дисперсной фазы.

К диспергационным методам получения золей можно отнести метод Бредига, который основан на образовании вольтовой дуги между электродами из диспергируемого металла, помещенными в воду. Сущность метода заключается в распылении металла электрода в дуге, а также в конденсации паров металла, образующихся при высокой температуре. Поэтому электрический способ соединяет в себе черты диспергационных и конденсационных методов. Метод электрораспыления был предложен Бредигом в 1898 г. Бредиг включал в цепь постоянного тока силой 5-10 А и напряжением 30-110 В амперметр, реостат и два электрода из диспергируемого металла. Электроды он погружал в сосуд с водой, охлаждаемый снаружи льдом. Схематическое устройство прибора, которым пользовался Бредиг, показано на рис. 2 (смотри приложение). При прохождении тока через электроды между ними под водой возникает вольтова дуга. При этом у электродов образуется облачко высокодисперсного металла. Для получения более стойкий золей в воду, в которую погружены электроды, целесообразно вводить следы стабилизирующих электролитов, например гидроокисей щелочных металлов.

Более общее значение имеет способ Сведберга, в котором используется колебательный разряд высокого напряжения, приводящий к проскакиванию искры между электродами. Этим способом можно получать не только гидрозоли, но и органозоли различных металлов.

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что обычно используют для создания более прочных материалов. В то же время увеличение прочности материалов по мере их измельчения ведет к большому расходу энергии на дальнейшее диспергирование. Разрушение материалов может быть облегчено при использовании эффекта Ребиндера - адсорбционного понижения прочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно- активных веществ (ПАВ), в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких ПАВ, называемых в данном случае понизителями твердости, могут быть использованы, например, жидкие металлы для разрушения твердых металлов, органические вещества для уменьшения прочности органических монокристаллов. Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. ПАВ не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, так как, покрывая поверхность частиц, они тем самым препятствуют обратному слипанию их или слиянию (для жидкостей). Это также способствует достижению высокодисперсного состояния.

Применением диспергационных методов достичь весьма высокой дисперсности обычно не удается. Системы с размерами частиц порядка 10-6 - 10-7 см получают конденсационными методами.

дисперсный система гомогенный среда

Существуют два общих подхода к получению дисп. систем – дисперсионный и конденсационный. Дисперсионный метод основан на измельчении макроскопических частиц до наноразмеров (1-100 нм).

Механическое измельчение не получило широкого распространения из-за большой энергоемкости. В лабораторной практике используется ультразвуковое измельчение. При измельчении конкурируют два процесса: диспергирование и агрегирование возникающих частиц. Соотношение скоростей этих процессов зависит от длительности помола, температуры, природы жидкой фазы, присутствия стабилизаторов (чаще всего ПАВ). Подбирая оптимальные условия, можно получить частицы требуемого размера, однако распределение частиц по размерам бывает достаточно широким.

Наиболее интересно самопроизвольное диспергирование тв тел в жидкой фазе. Подобный процесс может наблюдаться для веществ, имеющих слоистую структуру. В таких структурах имеет место сильное взаимодействие между атомами внутри слоя и слабое в-д-в взаимодействие между слоями. Например, сульфиды молибдена и вольфрама, имеющие слоистую структуру, самопроизвольно диспергируются в ацетонитриле с образованием бислойных частиц нанометрового размера. При этом жидкая фаза проникает между слоями, увеличивает межслойное расстояние, взаимодействие между слоями ослабевает. Под действием тепловых колебаний происходит отрыв наночастиц с поверхности тв фазы.

Конденсационные методы подразделяются на физические и химические. Формирование наночастицосущствляется через ряд переходных состояний при образовании промежуточных ансамблей, приводящих к возникновению зародыша новой фазы, спонтанному его росту и появлению физической поверхности раздела фаз. Важно обеспечить высокую скорость образования зародыша и малую скорость его роста.

Физические методы широко используются для получения металлических ульрадисперсных частиц. Эти методы по сути являются дисперсионно-конденсационными. На первой стадии металл диспергируют до атомов при испарении. Затем за счет пересыщения паров происходит конденсация.

Метод молекулярных пучков применяют для получения покрытий толщиной около 10 нм. Исходный материал в камере с диафрагмой нагревают до высоких температур в вакууме. Испарившиеся частицы, проходя через диафрагму, образуют молекулярный пучок. Интенсивность пучка и скорость конденсации частиц на подложке можно менять, варьируя температуру и давление пара над исходным материалом.

Аэрозольный метод заключается в испарении металла в разреженной атмосфере инертного газа при пониженной температуре с последующей конденсацией паров. Этим методом были получены наночастицыAu, Fe, Co, Ni, Ag, Al; их оксидов, нитридов, сульфидов.

Криохимический синтез основан на конденсации атомов металла (или соединений металла) при низкой температуре в инертной матрице.

Химическая конденсация . Коллоидный раствор золота (красного) с размером частиц был получен в 1857 г Фарадеем. Этот золь демонстрируют в Британском музее. Устойчивость его объясняется образованием ДЭС на поверхности раздела тв фаза-раствор и возникновением электростатической составляющей расклинивающего давления.

Часто синтез наночастиц проводят в растворе при протекании химических реакций. Для получения металлических частиц применяют реакции восстановления. В качестве восстановителя используют алюмо- и борогидриды, гипофосфиты и др. Например, золь золота с размером частиц 7 нм получают восстановлением хлорида золота боргидридом натрия.

Наночастицы солей или оксидов металлов получают в реакциях обмена или гидролиза.

В качестве стабилизаторов используют природные и синтетические ПАВ.

Были синтезированы наночастицы смешанного состава. Например, Cd/ZnS, ZnS/CdSe, TiO 2 /SiO 2 . Такие наночастицы получают осаждением молекул одного типа (оболочка) на предварительно синтезированной наночастице другого типа (ядро).

Основной недостаток всех методов – это широкое распределение наночастиц по размерам. Один из методов регулирования размеров наночастиц связан с получением наночастиц в обратных микроэмульсиях. В обратных микроэмульсияхдис фаза – вода, дис среда – масло. Размер капель воды (или другой полярной жидкости) может меняться в широких пределах в зависимости от условий получения и природы стабилизатора. Капля воды играет роль реактора, в котором образуется новая фаза. Размер образующейся частицы ограничен размерами капли, форма этой частицы повторяет форму капли.

Золь-гелевый метод содержит следующие стадии: 1. приготовление исходного раствора, обычно содержащего алкоксиды металлов М(ОR) n , где М-это кремний, титан, цинк, алюминий, олово, церий и др., R- алкал или арил; 2. образование геля за счет реакций полимеризации; 3. сушка; 4. термообработка. В органических растворителях проводят гидролиз

М(ОR) 4 +4H 2 OM(OH) 4 +4ROH.

Затем происходит полимеризация и образование геля

mM(OH) n (MO) 2 +2mH 2 O.

Метод пептизации. Различают пептизацию при промывании осадка, пептизацию осадка электролитом; пептизацию поверхностно-активными веществами; химическую пептизацию.

Пептизация при промывании осадка сводится к удалению из осадка электролита, вызвавщего коагуляцию. При этом толщина ДЭС увеличивается, силы ионно-электростатического отталкивания преобладают над силами межмолекулярного притяжения.

Пептизация осадка электролитомсвязана со способностью одного из ионов электролита адсорбироваться на частицах, что способствует формированию ДЭС на частицах.

Пептизация поверхностно-активными веществами. Макромолекулы ПАВ адсорбируясь на частицах или придают им заряд (ионогенные ПАВ) или формируют адсорбционно-сольватный барьер, препятствующий слипанию частиц в осадке.

Химическая пептизация происходит, когда добавляемое в систему вещество взаимодействует с веществом осадка. При этом образуется электролит, формирующий ДЭС на поверхности частиц.

Методы получения ДИСПЕРСНЫХ СИСТЕМ

Методы получения коллоидных растворов также можно разделить на две группы: методы конденсации и диспергирования (в отдельную группу выделяется метод пептизации, который будет рассмотрен позднее). Еще одним необходимым для получения золей условием, помимо доведения размеров частиц до коллоидных, является наличие в системе стабилизаторов – веществ, препятствующих процессу самопроизвольного укрупнения коллоидных частиц.

Рис. Классификация способов получения дисперсных систем

(в скобках указан вид систем)

Дисперсионные методы

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов. Процесс диспергирования осуществляется различными методами: механическим размалыванием вещества в т.н. коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука.

Диспергирование должна быть самопроизвольное и несамопроизвольное. Самопроизвольное диспергирование характерно для лиофильных систем и связано с ростом беспорядка системы (когда из одного большого куска образуется много мелких частиц). При диспергировании при постоянной температуре рост энтропии должен превышать изменение энтальпии.

В отношении лиофобных систем самопроизвольное диспергирование исключено, в связи с этим диспергирование возможно лишь путем затраты определœенной работы или эквивалентного количества теплоты, ĸᴏᴛᴏᴩᴏᴇ измеряется, в частности, энтальпией.

Изменение энтальпии в изобарно-изотермическом процессе определяется соотношением между работой когезии W к и работой адгезии W а. Энергия (работа) когезии W к характеризует связь внутри тела, а энергия (работа) адгезии W а - связь его с окружающей средой.

Энергию образования новой поверхности можно выразить через энтальпию, которая имеет вид

Уравнение показывает изменение энтальпии в результате диспергирования. Для лиофильных систем, способных к самопроизвольному диспергированию, когда ΔS > 0, из условия следует, что ΔH < 0 и

Выполнение данного условия означает самопроизвольный распад большого куска на множество мелких. Подобный процесс наблюдается для таких лиофильных систем, как растворы ВМС, частицы глины и некоторые другие.

В отличие от лиофильных в лиофобных системах когезия W к больше энергии межфазового взаимодействия, ᴛ.ᴇ. адгезии W а. Рост энтальпии (ΔН > 0) соответствуют увеличению энергии Гиббса

ΔН > TΔS; ΔG > 0.

Процесс диспергирования в данном случае является типично несамопроизвольным и осуществляется за счёт внешней энергии.

Диспергирование характеризуется степенью диспергирования. Она определяется отношением размеров исходного продукта и частиц дисперсной фазы полученной системы. Степень диспергирования можно выразить следующим образом:

α 1 = d н /d к; α 2 = B н /B к; α 3 = V н /V к,

где d н; d к; B н; B к; V н; V к - соответственно диаметр, площадь пoвepxнocти, объём частиц до и после диспергирования.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, степень диспергирования должна быть выражена в единицах размера (α 1), площади поверхности (α 2) или объёма (α 3) частиц дисперсной фазы, ᴛ.ᴇ. должна быть линœейной, поверхностной или объёмной.

Работа W, необходимая для диспергирования твердого тела или жидкости, затрачивается на деформирование тела W д и на образование новой поверхности раздела фаз W а, которая измеряется работой адгезии. Деформирование является крайне важно й предпосылкой разрушения тела. Согласно П.А.Ребиндеру работа диспергирования определяется по формуле

W =W a + W д = σ*ΔB + кV,

где σ* - величина, пропорциональная или равная поверхностному натяжению на границе раздела между дисперсной фазой и дисперсионной средой; ΔB - увеличение поверхности раздела фаз в результате диспергирования; V - объём исходного тела до диспергирования; к - коэффициент, эквивалентный работе деформирования единицы объёма тела.

Методы конденсации

К конденсационным методам получения дисперсных систем относятся конденсация, десублимация и кристаллизация. Οʜᴎ основаны на образовании новой фазы в условиях пересыщенного состояния вещества в газовой или жидкой среде. При этом система из гомогенной переходит в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация - для жидкой среды.

Необходимым условием конденсации и кристаллизации является пересыщение и неравномерное распределœение вещества в дисперсионной среде (флуктуация концентрации), а также образование центров конденсации или зародышей.

Степень пересыщения β для раствора и пара можно выразить следующим образом:

β ж = с/с s , β П = р/р s ,

где р, с - давление пересыщенного пара и концентрация вещества в пересыщенном растворе; р s - равновесное давление насыщенного пара над плоской поверхностью; с s - равновесная концентрация, соответствующая образованию новой фазы.

Для осуществления кристаллизации охлаждают раствор или газовую смесь.

В корне конденсационных методов получение дисперсных систем лежат процессы кристаллизации, десублимации и конденсации, которые вызваны уменьшением энергии Гиббса (ΔG < 0) и протекают самопроизвольно.

При зарождении и образовании частиц из пересыщенного раствора или газовой среды изменяется химический потенциал µ, возникает поверхность раздела фаз, которая становится носителœем избыточной свободной поверхностной энергии.

Работа͵ затрачиваемая на образование частиц, определяется поверхностным натяжением σ и равна

W 1 = 4πr 2 σ,

где 4πr 2 - поверхность сферических частиц радиусом r.

Химический потенциал изменяется следующим образом

Δμ = μ i // – μ i / < 0; μ i // > μ i / ,

где μ i / и μ i // - химические потенциалы гомо и гетерогенных систем (при переходе от мелких капель к крупным).

Изменение химического потенциала характеризует перенос определœенного числа молей вещества из одной фазы в другую; это число n молей равно объёму частицы 4πr 3 /3, делœенному на мольный объём Vм

Работа образования новой поверхности в процессе конденсации W к равна

где W 1 и W 2 - соответственно работа͵ затрачиваемая на образование поверхности частиц, и работа на перенос вещества из гомогенной среды в гетерогенную.

Образование дисперсных систем может происходить в результате физической и химической конденсации, а также при замене растворителя.

Физическая конденсация осуществляется при понижении температуры газовой среды, содержащей пары различных веществ. При выполнении необходимых условий образуются частицы или капли дисперсной фазы. Подобный процесс имеет место не только в объёме газа, но и на охлажденной твердой поверхности, которую помещают в более теплую газовую среду.

Конденсация определяется разностью химических потенциалов (μ i // – μ i /) < 0, которая изменяется в результате замены растворителя. В отличие от обычной физической конденсации при замене растворителя состав и свойства дисперсионной среды не остаются постоянными. В случае если спиртовые или ацетоновые растворы серы, фосфора, канифоли и некоторых других органических веществ влить в воду, то раствор становится пересыщенным, происходит конденсация и образуются частицы дисперсной фазы. Метод замены растворителя является одним из немногих, при помощи которых можно получить золи.

При химической конденсации происходит образование вещества с одновременным его пересыщением и конденсацией.

Методы получения ДИСПЕРСНЫХ СИСТЕМ - понятие и виды. Классификация и особенности категории "Методы получения ДИСПЕРСНЫХ СИСТЕМ" 2017, 2018.