Чем отличаются электромагнитные волны. Электромагнитные волны и их излучение

Понятие электромагнитного поля

Впервые понятие поля было предложено Фарадеем и базировалось оно на следующих утверждениях:

  • заряд окружен электростатическим полем;
  • движущийся заряд окружен магнитным полем;
  • переменное магнитное поле порождает вихревое электрическое поле .

Согласно гипотезе Максвелла, при изменении электрического поля создается вихревое магнитное поле. На этой гипотезе строится идея единого электромагнитного поля.

Определение 1

Электромагнитное поле является фундаментальным понятием физики. Оно представляет собой особую форму существования материи, совокупность электрического и магнитного полей, взаимодействующих с электрически заряженными частицами и телами.

Проявление электромагнитного поля можно проследить в его воздействии как на покоящиеся, так и на движущиеся заряженные частицы. Скорость его распространения велика, но всегда конечна.

Поведение электромагнитного поля наиболее точно описывается системой уравнений Максвелла. Запишем систему из четырех уравнений в системе СИ:

$\div \vec{E} = \frac{\rho}{\varepsilon_0}$;

$rot \vec{E} = -\frac{\partial vec{B}}{\partial t}$;

$\div \vec{B} = 0$;

$rot \vec{B} = (\frac{j}{ \varepsilon_0 c^2}) + (\frac {1}{c^2}) (\frac{\partial B}{\partial t})$, где:

  • $\div$ - дифференциальный оператор, определяющий поток поля через определенную поверхность;
  • $\vec{E}$ - векторное электрическое поле;
  • $\rho$ - суммарный заряд, ограниченный замкнутой поверхностью;
  • $rot \vec{E}$ - ротор (интеграл через замкнутую поверхность) электрического поля;
  • $B$ - магнитная индукция;
  • $j$ - плотность электрического тока.

Суть этих четырех уравнений можно свести к следующим утверждениям:

  • электрическое поле создается электрическим зарядом;
  • вихревое электрическое поле создается изменяющимся магнитным полем;
  • поток магнитного поля через замкнутую поверхность равен нулю, т. е. магнитных зарядов не существует;
  • электрический ток и смещение электрического поля создают вихревое электрическое.

Понятие электромагнитной волны

Любое изменение состояния электромагнитного поля (возмущение поля) имеет волновой характер. При ускоренном движении заряда в поле осуществляется излучение электромагнитных волн, распространяющихся в пространстве с некоторой конечной скоростью. Так, например, в вакууме электромагнитные волны излучаются со скоростью света, т.е. примерно 300 км/сек.

Волны расходятся от источника возмущения. В случае с электромагнитными волнами источниками возмущения следует принимать передвигающиеся магнитные и электрические поля.

Главный источник электромагнитных волн на Земле – Солнце. Часть испускаемых Солнцем электромагнитных волн улавливается человеческим глазом (как следствие – ощущение цвета). Особенно стоит отметить радиоволны – волны, длина которых превышает 500 мкм, а частота составляет менее $6 10^{12}$ Гц.

В целом, длина радиоволны определяется по формуле:

$\lambda = \frac{300}{f}$, где:

  • $\lambda$ - длина волны, м
  • $f$ - частота волны.

Понятие колебания и его характеристики

В общем смысле, колебание – это процесс или движение, характеризующийся определенной повторяемостью во времени. В зависимости от природы колебаний, их объединяют в две основные группы – механические и электромагнитные. К изучению и тех и других применяют единый подход, поскольку их характеристики сходны по многим параметрам.

Итак, значительную группу процессов относят к свободным или собственным колебаниям. Собственные колебания совершаются под действием единожды сообщенной энергии без последующего воздействия внешних сил на колебательную систему в целом.

Отдельно стоит выделить гармонические колебания. При гармоническом колебательном процессе рассматриваемая величина изменяется во времени согласно закону синуса (косинуса). Многие явления, встречаемые в природе и технике, близки по своим характеристикам гармоническим колебаниям. Многие периодические процессы можно представить как наложение гармонических колебаний.

Приведем уравнение, описывающее гармоническое колебание величины $s$:

$s = A\cos{\omega_0 t + \varpi}$, где:

  • $\omega_0$ - циклическая частота;
  • $A$ - амплитуда колебания (максимальное значение величины $s$).

Здесь периодически меняющийся аргумент косинуса $(\omega_0 t + \varpi)$ будет называться фазой колебания. Фаза колебания характеризует отклонение величины $s$ от точки равновесия в момент времени $t$.

Определение 2

Значение $\varpi$ в уравнении называется начальной фазой. Начальная фаза характеризует отклонение колеблющейся величины от точки равновесия в начальный момент времени. Таким образом, значение $\varpi$ зависит от выбора начала отсчета времени.

Косинус меняется в пределах от -1 до 1, следовательно, величина $s$ может принимать значение от $-A$ до $A$.

Колебательная система возвращается в начальное состояние через промежуток времени $T$, названный периодом колебания. За один $T$ система получает приращение в $2\pi$:

$\omega_0 (t+T) = (\omega_0 t + \varpi) +2\pi$

Путем преобразования получаем: $T = \frac{2\pi}{\omega_0}$.

Введем понятие частоты колебаний. Так, частота колебаний есть величина, обратная периоду колебаний:

$\nu = \frac{1}{T}$

Численно она равна количеству полных колебаний, совершенных за единицу времени. Стандартная единица частоты – герц (Гц). Один Гц – частота колебания, при котором за 1 секунду совершается 1 колебательный цикл.

Запишем дифференциальное уравнение для гармонических колебаний:

$\frac{d^2 s}{dt^2} + (\omega_0)^2 s = 0$

Решением этого уравнения является уже приведенное выражение:

$s = A\cos{\omega_0 t + \varpi}$

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.

Характеристики электромагнитного излучения

Любую электромагнитную волну описывают с помощью трех характеристик.

1. Частота.

2. Поляризация.

Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.

Это явление активно используют на практике. Например, в кино при показе 3D фильмов.

С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз.

Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.

Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.

Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.

Скорость распространения в вакууме равна 300 тыс. км за секунду.

Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:

Виды электромагнитных волн

Все электромагнитное излучение делят по частоте.

1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.

Длина радиоволн колеблется от 10 км до 1 мм, а от 30 кГц до 300 ГГц.

Их источниками может быть как деятельность человека, так и различные естественные атмосферные явления.

2. . Длина волны лежит в пределах 1мм — 780нм, а может доходить до 429 ТГц. Инфракрасное излучение еще называют тепловым. Основа всей жизни на нашей планете.

3. Видимый свет. Длина 400 — 760/780нм. Соответственно колеблется в пределах 790-385 ТГц. Сюда относят весь спектр излучения, которое можно увидеть человеческим глазом.

4. . Длина волны меньше, чем в инфракрасного излучения.

Может доходить до 10 нм. таких волн очень большая – порядка 3х10^16 Гц.

5. Рентгеновские лучи . волны 6х10^19 Гц, а длина порядка 10нм — 5пм.

6. Гамма волны. Сюда относят любое излучение, которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.

Сфера применения

Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.

Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.

Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.

Именно эти технологии сформировали информационный облик современного общества.

Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.

Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.

Рентгеновские снимки помогают определить повреждения внутренних тканей человека.

С помощью лазеров проводят ряд операций, требующих ювелирной точности.

Важность электромагнитного излучения в практической жизни человека сложно переоценить.

Советское видео о электромагнитном поле:

Возможное негативное влияние на человека

Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:

Усталость;

Головную боль;

Тошноту.

Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.

Интересное виде о влиянии ЭМ волн на человека:

Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.

М. Фарадей ввел понятие поля:

    вокруг покоящегося заряда возникает электростатическое поле,

    вокруг движущихся зарядов (тока) возникает магнитное поле.

В 1830 г. М. Фарадей открыл явление электромагнитной индукции: при изменении магнитного поля возникает вихревое электрическое поле.

Рисунок 2.7 - Вихревое электрическое поле

где,
- вектор напряженности электрического поля,
- вектор магнитной индукции.

Переменное магнитное поле создает вихревое электрическое поле.

В 1862 г. Д.К. Максвелл выдвинул гипотезу: при изменении электрического поля возникает вихревое магнитное поле.

Возникла идея о едином электромагнитном поле.

Рисунок 2.8 - Единое электромагнитное поле.

Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле - это особая форма материи - совокупность электрических и магнитных полей. Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное поле. Оно материально:

Проявляет себя в действии как на покоящиеся, так и на движущиеся заряды;

Распространяется с большой, но конечной скоростью;

Существует независимо от нашей воли и желаний.

При скорости заряда, равной нулю, существует только электрическое поле. При постоянной скорости заряда возникает электромагнитное поле.

При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в пространстве с конечной скоростью.

Разработка идеи электромагнитных волн принадлежит Максвеллу, но уже Фарадей догадывался об их существовании, хотя побоялся опубликовать работу (она была прочитана более чем через 100 лет после его смерти).

Главное условие возникновения электромагнитной волны - ускоренное движение электрических зарядов.

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380...780 нм (рис. 2.1). В области видимого спектра глаз ощущает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Рисунок 2.9 - Спектр электромагнитных волн

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн - провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Ра́дио (лат. radio - излучаю, испускаю лучи ← radius - луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Радиоволны (от радио...), электромагнитные волны с длиной волны > 500 мкм (частотой < 6×10 12 Гц).

Радиоволны - это электрические и магнитные поля, меняющиеся во времени. Скорость распространения радиоволн в свободном пространстве составляет 300000 км/с. Исходя из этого, можно определить длину радиоволны (м).

λ=300/f, гдеf - частота (МГц)

Звуковые колебания воздуха, созданные во время телефонного разговора, преобразуются микрофоном в электрические колебания звуковой частоты, которые по проводам передаются к аппаратуре абонента. Там, на другом конце линии, они с помощью излучателя телефона преобразуются в колебания воздуха, воспринимаемые абонентом как звуки. В телефонии средством связи цепи являются провода, в радиовещании - радиоволны.

«Сердцем» передатчика любой радиостанции является генератор - устройство, вырабатывающее колебания высокой, но строго постоянной для данной радиостанции частоты. Эти колебания радиочастоты, усиленные до необходимой мощности, поступают в антенну и возбуждают в окружающем ее пространстве электромагнитные колебания точно такой же частоты - радиоволны. Скорость удаления радиоволн от антенны радиостанции равна скорости света: 300 000 км/с, что почти в миллион раз быстрее распространения звука в воздухе. Это значит, что если на Московской радиовещательной станции в некоторый момент времени включили передатчик, то ее радиоволны меньше чем за 1 /30 с дойдут до Владивостока, а звук за это время успеет распространиться всего, лишь на 10- 11 м.

Радиоволны распространяются не только в воздухе, но и там, где его нет, например, в космическом пространстве. Этим они отличаются от звуковых волн, для которых совершенно необходим воздух или какая-либо другая плотная среда, например вода.

Электромагнитная волна – распространяющееся в пространстве электромагнитное поле (колебания векторов
). Вблизи заряда электрическое и магнитное поля изменяются со сдвигом фаз p/2.

Рисунок 2.10 - Единое электромагнитное поле.

На большом расстоянии от заряда электрическое и магнитное поля изменяются синфазно.

Рисунок 2.11 - Синфазное изменение электрического и магнитного полей.

Электромагнитная волна поперечна . Направление скорости электромагнитной волны совпадает с направлением движения правого винта при повороте ручки буравчика вектора к вектору .

Рисунок 2.12 - Электромагнитная волна.

Причем в электромагнитной волне выполняется соотношение
, где с – скорость света в вакууме.

Максвелл теоретически рассчитал энергию и скорость электромагнитных волн.

Таким образом, энергия волны прямо пропорциональна четвертой степени частоты . Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты.

Электромагнитные волны были открыты Г. Герцем (1887).

Закрытый колебательный контур электромагнитных волн не излучает: вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки. Частота колебаний определяется параметрами колебательного контура:
.

Рисунок 2.13 - Колебательный контур.

Для увеличения частоты необходимо уменьшить L и C, т.е. развернуть катушку до прямого провода и, т.к.
, уменьшить площадь пластин и развести их на максимальное расстояние. Отсюда видно, что мы получим, по существу, прямой проводник.

Такой прибор называется вибратором Герца. Середина разрезается и подсоединяется к высокочастотному трансформатору. Между концами проводов, на которых закрепляются маленькие шаровые кондукторы, проскакивает электрическая искра, которая и является источником электромагнитной волны. Волна распространяется так, что вектор напряженности электрического поля колеблется в плоскости, в которой расположен проводник.

Рисунок 2.14 - Вибратор Герца.

Если параллельно излучателю расположить такой же проводник (антенну), то заряды в нем придут в колебательное движение и между кондукторами проскакивают слабые искры.

Герц обнаружил электромагнитные волны на опыте и измерил их скорость, которая совпала с рассчитанной Максвеллом и равной с=3 . 10 8 м/с.

Переменное электрическое поле порождает переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле, то есть антенна, возбудившее одно из полей, вызывает появление единого электромагнитного поля. Важнейшее свойство этого поля в том, что оно распространяется в виде электромагнитных волн.

Скорость распространения электромагнитных волн в среде без потерь зависит от относительно диэлектрической и магнитной проницаемости среды. Для воздуха магнитная проницаемость среды равняется единице, следовательно, скорость распространения электромагнитных волн в этом случае равна скорости света.

Антенной может служить вертикальный провод, питаемый от генератора высокой частоты. Генератор затрачивает энергию на ускорение движения свободных электронов в проводнике, а эта энергия преобразуется в переменное электромагнитное поле, то есть электромагнитные волны. Чем больше частота тока генератора, тем быстрее изменяется электромагнитное поле и интенсивнее излечение волн.

С проводом антенны связаны как электрическое поле, силовые линии которого начинаются на положительных и кончаются на отрицательных зарядах, так и магнитное поле, линии которого замыкаются вокруг тока провода. Чем меньше период колебаний, тем меньше времени остается для возвращения энергии связанных полей в провод (то есть, к генератору) и тем больше переходит ее в свободные поля, которые распространяются далее в виде электромагнитных волн. Эффективное излучения электромагнитных волн происходит при условии соизмеримости длины волны и длины излучающего провода.

Таким образом, можно определить, что радиоволна - это не связанное с излучателем и каналообразующими устройствами электромагнитное поле, свободно распространяющееся в пространстве в виде волны с частотой колебаний от 10 -3 до 10 12 Гц.

Колебания электронов в антенне создаются источником периодически изменяющейся ЭДС с периодом Т . Если в некоторый момент поле у антенны имело максимальное значение, то такое же значение оно будет иметь спустя время Т . За это время существовавшее в начальный момент у антенны электромагнитное поле переместится на расстояние

λ = υТ (1)

Минимальное расстояние между двумя точками пространства, поле в которых имеет одинаковое значение, называется длиной волны. Как следует из (1), длина волны λ зависит от скорости ее распространения и периода колебаний электронов в антенне. Так как частота тока f = 1 / T , то длина волны λ = υ / f .

Радиолиния включает в себя следующие основные части:

Передатчик

Приемник

Среда, в которой распространяются радиоволны.

Передатчик и приемник являются управляемыми элементами радиолинии, так как можно увеличить мощность передатчика, подключить более эффективную антенну и увеличить чувствительность приемника. Среда является неуправляемым элементом радиолинии.

Отличие линии радиосвязи от проводных линий заключается в том, что в проводных линиях в качестве связующего звена используются провода или кабель, которые являются управляемыми элементами (можно изменить их электрические параметры).